Uber Will Bring You Flying Taxis, if You Can Help Build a Magical Battery

Uber

The company needs to develop a battery that is lighter and has more storage capacity than anything produced so far.

Uber has a bold vision for the future of urban transport: flying cars. By 2023, the world’s highest-valued startup aims to make small aircraft rides, with vertical takeoff and landing, an affordable option for daily commuters (think San Francisco to San Jose in 15 minutes). Better still, to ensure a sustainable future for its business, Uber wants its flying machines to be 100% electric—and with energy coming from only clean sources—from the start. There will be pilots early on, but by 2030 the system will be fully autonomous, Uber says.

In a swanky presentation at the 2018 International Battery Seminar on March 27, Celina Mikolajczak, Uber’s director of engineering for energy-storage systems, laid out these impressive goals—then concluded that there’s no way for the company to meet them without help from others.

“The battery we need to do this really well…does not exist,” Mikolajczak admitted. She had come to Florida with a challenge for the battery-expert community: Develop a battery that is lighter and has more storage capacity than anything produced so far.

Then came time for questions. “Do you have a back up plan?” asked Jeff Dahn, one of the world’s leading battery experts. The audience exploded in laughter, grounding Uber’s planes before they even took off.

Facing physics

Uber’s presentation was even more fantastical when considered in juxtaposition to the talk Dahn gave about his work just before it. Dahn, one of the world’s leading battery experts, is currently working on next-generation batteries for Tesla.

In his presentation, he noted how, despite decades of development, researchers have to cut the battery open to study every important thing going on inside it. That means they can’t always test the same battery at different times in its lifecycle.

Dahn’s team at Dalhousie University found a way around the crude technique. Inside every lithium-ion battery, there’s a liquid electrolyte that transports charged particles between the positive and the negative electrodes. Dahn said that you can find out crucial details about the health of the battery at different times in the lifecycle by studying how long it takes for a battery to freeze and defreeze, when compared with how the battery fared in the same process when it was new. In theory, this discovery could help lead scientists to build the new batteries Uber needs. But it’s also a strikingly modest step forward in battery science, and not the giant leap of Uber’s dreams.

The presentation seemed appropriate for one of the world’s premier conference on batteries. Many in the crowd of battery-community experts were taking notes furiously during Dahn’s presentation. As soon as Uber’s presentation began, however, they laid down their pens. The goals seemed too far from today’s reality.

Uber’s flying cars will need not only new aircraft designs but also a whole new regulatory system to support a new form of urban transport. Crucially, to be commercially successful, Uber’s planes will need a battery that is light, cheap, long-lasting, quick-charging, and powerful enough to supply energy to an aircraft big enough to carry a few people.

Here are the numbers that Mikolajczak’s dream battery needs to hit, in order to power a fleet of flying cars with a range of about 60 miles (100 km):

  • Battery size: 150 kWh (kilowatt-hours)
  • Battery pack energy density: 300 Wh/kg (watt-hours per kilogram)
  • Battery life: 500 cycles (by 2023); 1,000 cycles (2028); 2,000 cycles (2032)
  • Peak charge time: add about 20% capacity in five minutes

To put that in context, here are the stats for one of the most advanced electric cars on the market—the 2017 Tesla Model S 100D, which has a range of 335 miles (540 km):

  • Battery size: 100 kWh
  • Battery pack energy density: 200 Wh/kg
  • Battery life: at least 500 cycles
  • Peak charge time: add about 50% capacity in 30 minutes

By those figures alone, it might seem like Uber’s dream battery is feasible.

But the best lithium-ion technology of today is near the limit of its energy density. There are materials that can theoretically pack in more energy, but they would require a new chemistry. And industry experts say that bringing new chemistry to market can take as long as 15 years, because a lot goes into ensuring a reliable product: from securing the supply chain to performing rigorous safety tests. (One of the reasons for excitement around Dahn’s talk was that his technique, when commercialized, could reduce the time spent on these tests.)

Mikolajczak notes that the U.S. Energy Department is currently spending $50 million to create a battery with an energy density of as much as 500 Wh/kg by 2021. But industry experts know well that lofty government goals don’t always make for attainable research targets.

In the end, the reality may be somewhere in the middle. Given the extensive interest in new battery technology, not just for flying cars but many other more mundane applications, it may not take as much as 15 years to get there. But it’s unlikely we’ll hit the goal before Uber’s stated goal of 2023.

Uber watchers say flying cars were a pet project of its former CEO Travis Kalanick. Though Uber has invested in building out the team for the project even after Kalanick’s departure, those that follow the company closely say the project seems more a PR exercise than a serious commercial venture.

Fly away… soon

People have dreamed of flying cars for more than a century. But commercial constraints have stopped them from becoming a reality. For instance, older designs of flying cars needed a runaway to take off and land, which is not something most people who want—and can afford—a flying car are able to spend money building.

That’s finally changing. The technology of small drones has matured to the point where developers can build flying cars that can take off and land vertically—eliminating the need for runways. If there has even been a time when flying cars could become a reality, it is now. Terrafugia, a Chinese-owned U.S. startup, says its gas-powered flying car, the TF-X, will go on sale next year, for somewhere between $200,000 and $300,000—comparable to the sticker price of a luxury supercar.

Uber’s insistence on being all-electric from day one is noble, but not pragmatic. If Uber was serious about its aerial ambitions, it’d be better off building an initial fleet made up of TF-X’s, rather than waiting for an all-electric fleet that relies on development of a super battery on an “aggressive schedule,” as Mikolajczak puts it. Starting with reliable gas-powered planes would mean the company would face regulators sooner rather than later, smoothing the eventual transition to electric versions. It would also buy the company time to secure its dream battery. When I asked Mikolajczak why Uber isn’t considering a pilot program using gas-powered aircraft, she wouldn’t give me an answer. Uber confirmed that it may design batteries, but it won’t manufacture them. It also confirmed that it definitely won’t design or manufacture its own flying cars.

Seen from another angle, however, it may be good to have Uber as an instigator. In May 2017, it hosted an “Elevate Summit” in Dallas, Texas, inviting anyone who wanted to work on flying taxis, and another one is lined up for May this year in Los Angeles, California. The startup could create just the right chemistry among industry people by bringing together what has been a disparate group to work towards more unified goals. For the innovators, it doesn’t hurt to know that a $70-billion company is ready to purchase their products if they get them to hit those targets.

X
This website uses cookies to enhance user experience and to analyze performance and traffic on our website. We also share information about your use of our site with our social media, advertising and analytics partners. Learn More / Do Not Sell My Personal Information
Accept Cookies
X
Cookie Preferences Cookie List

Do Not Sell My Personal Information

When you visit our website, we store cookies on your browser to collect information. The information collected might relate to you, your preferences or your device, and is mostly used to make the site work as you expect it to and to provide a more personalized web experience. However, you can choose not to allow certain types of cookies, which may impact your experience of the site and the services we are able to offer. Click on the different category headings to find out more and change our default settings according to your preference. You cannot opt-out of our First Party Strictly Necessary Cookies as they are deployed in order to ensure the proper functioning of our website (such as prompting the cookie banner and remembering your settings, to log into your account, to redirect you when you log out, etc.). For more information about the First and Third Party Cookies used please follow this link.

Allow All Cookies

Manage Consent Preferences

Strictly Necessary Cookies - Always Active

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data, Targeting & Social Media Cookies

Under the California Consumer Privacy Act, you have the right to opt-out of the sale of your personal information to third parties. These cookies collect information for analytics and to personalize your experience with targeted ads. You may exercise your right to opt out of the sale of personal information by using this toggle switch. If you opt out we will not be able to offer you personalised ads and will not hand over your personal information to any third parties. Additionally, you may contact our legal department for further clarification about your rights as a California consumer by using this Exercise My Rights link

If you have enabled privacy controls on your browser (such as a plugin), we have to take that as a valid request to opt-out. Therefore we would not be able to track your activity through the web. This may affect our ability to personalize ads according to your preferences.

Targeting cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.

Social media cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

If you want to opt out of all of our lead reports and lists, please submit a privacy request at our Do Not Sell page.

Save Settings
Cookie Preferences Cookie List

Cookie List

A cookie is a small piece of data (text file) that a website – when visited by a user – asks your browser to store on your device in order to remember information about you, such as your language preference or login information. Those cookies are set by us and called first-party cookies. We also use third-party cookies – which are cookies from a domain different than the domain of the website you are visiting – for our advertising and marketing efforts. More specifically, we use cookies and other tracking technologies for the following purposes:

Strictly Necessary Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Functional Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Performance Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Social Media Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Targeting Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.