Police Are Using Artificial Intelligence to Spot Written Lies

ShotPrime Studio/Shutterstock.com

Featured eBooks

Digital First
Cloud Smarter
Cybersecurity & the Road Ahead

Grammar can give away whether you're telling the truth or not.

There’s no foolproof way to know if someone’s verbally telling lies, but scientists have developed a tool that seems remarkably accurate at judging written falsehoods. Using machine learning and text analysis, they’ve been able to identify false robbery reports with such accuracy that the tool is now being rolled out to police stations across Spain.

Computer scientists from Cardiff University and Charles III University of Madrid developed the tool, called VeriPol, specifically to focus on robbery reports. In their paper, published in the journal Knowledge-Based Systems earlier this year, they describe how they trained a machine-learning model on more than 1000 police robbery reports from Spanish National Police, including those that were known to be false. A pilot study in Murcia and Malaga in June 2017 found that, once VeriPol identified a report as having a high probability of being false, 83 percent of these cases were closed after the claimants faced further questioning. In total, 64 false reports were detected in one week.

VeriPol works by using algorithms to identify the various features in a statement, including all adjectives, verbs, and punctuations marks, and then picking up on the patterns in false reports. According to a Cardiff University statement, false robbery reports are more likely to be shorter, focused on the stolen property rather than the robbery itself, have few details about the attacker or the robbery, and lack witnesses.

Taken together, these sound like common-sense characteristics that humans could recognize. But the AI proved more effective at unemotionally scanning reports and identifying patterns, at least compared to historical data: Typically, just 12.14 false reports are detected by police in a week in June in Malaga, and 3.33 in Murcia.

Of course, that doesn’t mean the tool is perfect. “[O]ur model began to identify false statements where it was reported that incidents happened from behind or where the aggressors were wearing helmets,” co-author of the study Dr Jose Camacho-Collados, from Cardiff University’s School of Computer Science and Informatics, said in a statement. Bad luck for those who really were robbed from behind or by those wearing a helmet.