New technique uses near-miss particle physics to peer into quantum world

oxygen/Getty Images

COMMENTARY | Two physicists explain how they are measuring wobbling tau particles.

One way physicists seek clues to unravel the mysteries of the universe is by smashing matter together and inspecting the debris. But these types of destructive experiments, while incredibly informative, have limits.

We are two scientists who study nuclear and particle physics using CERN’s Large Hadron Collider near Geneva, Switzerland. Working with an international group of nuclear and particle physicists, our team realized that hidden in the data from previous studies was a remarkable and innovative experiment.

In a new paper published in Physical Review Letters, we developed a new method with our colleagues for measuring how fast a particle called the tau wobbles.

Our novel approach looks at the times incoming particles in the accelerator whiz by each other rather than the times they smash together in head-on collisions. Surprisingly, this approach enables far more accurate measurements of the tau particle’s wobble than previous techniques. This is the first time in nearly 20 years scientists have measured this wobble, known as the tau magnetic moment, and it may help illuminate tantalizing cracks emerging in the known laws of physics.

Why measure a wobble?

Electrons, the building blocks of atoms, have two heavier cousins called the muon and the tau. Taus are the heaviest in this family of three and the most mysterious, as they exist only for minuscule amounts of time.

Interestingly, when you place an electron, muon or tau inside a magnetic field, these particles wobble in a manner similar to how a spinning top wobbles on a table. This wobble is called a particle’s magnetic moment. It is possible to predict how fast these particles should wobble using the Standard Model of particle physics – scientists’ best theory of how particles interact.

Since the 1940s, physicists have been interested in measuring magnetic moments to reveal intriguing effects in the quantum world. According to quantum physics, clouds of particles and antiparticles are constantly popping in and out of existence. These fleeting fluctuations slightly alter how fast electrons, muons and taus wobble inside a magnetic field. By measuring this wobble very precisely, physicists can peer into this cloud to uncover possible hints of undiscovered particles.

Testing electrons, muons and taus

In 1948, theoretical physicist Julian Schwinger first calculated how the quantum cloud alters the electron’s magnetic moment. Since then, experimental physicists have measured the speed of the electron’s wobble to an extraordinary 13 decimal places.

The heavier the particle, the more its wobble will change because of undiscovered new particles lurking in its quantum cloud. Since electrons are so light, this limits their sensitivity to new particles.

Muons and taus are much heavier but also far shorter-lived than electrons. While muons exist only for mere microseconds, scientists at Fermilab near Chicago measured the muon’s magnetic moment to 10 decimal places in 2021. They found that muons wobbled noticeably faster than Standard Model predictions, suggesting unknown particles may be appearing in the muon’s quantum cloud.

Taus are the heaviest particle of the family – 17 times more massive than a muon and 3,500 times heavier than an electron. This makes them much more sensitive to potentially undiscovered particles in the quantum clouds. But taus are also the hardest to see, since they live for just a millionth of the time a muon exists.

To date, the best measurement of the tau’s magnetic moment was made in 2004 using a now-retired electron collider at CERN. Though an incredible scientific feat, after multiple years of collecting data that experiment could measure the speed of the tau’s wobble to only two decimal places. Unfortunately, to test the Standard Model, physicists would need a measurement 10 times as precise.

Lead ions for near-miss physics

Since the 2004 measurement of the tau’s magenetic moment, physicists have been seeking new ways to measure the tau wobble.

The Large Hadron Collider usually smashes the nuclei of two atoms together – that is why it is called a collider. These head-on collisions create a fireworks display of debris that can include taus, but the noisy conditions preclude careful measurements of the tau’s magnetic moment.

From 2015 to 2018, there was an experiment at CERN that was designed primarily to allow nuclear physicists to study exotic hot matter created in head-on collisions. The particles used in this experiment were lead nuclei that had been stripped of their electrons – called lead ions. Lead ions are electrically charged and produce strong electromagnetic fields.

The electromagnetic fields of lead ions contain particles of light called photons. When two lead ions collide, their photons can also collide and convert all their energy into a single pair of particles. It was these photon collisions that scientists used to measure muons.

These lead ion experiments ended in 2018, but it wasn’t until 2019 that one of us, Jesse Liu, teamed up with particle physicist Lydia Beresford in Oxford, England, and realized the data from the same lead ion experiments could potentially be used to do something new: measure the tau’s magnetic moment.

This discovery was a total surprise. It goes like this: Lead ions are so small that they often miss each other in collision experiments. But occasionally, the ions pass very close to each other without touching. When this happens, their accompanying photons can still smash together while the ions continue flying on their merry way.

These photon collisions can create a variety of particles – like the muons in the previous experiment, and also taus. But without the chaotic fireworks produced by head-on collisions, these near-miss events are far quieter and ideal for measuring traits of the elusive tau.

Much to our excitement, when the team looked back at data from 2018, indeed these lead ion near misses were creating tau particles. There was a new experiment hidden in plain sight!

First measurement of tau wobble in two decades

In April 2022, the CERN team announced that we had found direct evidence of tau particles created during lead ion near misses. Using that data, the team was also able to measure the tau magnetic moment – the first time such a measurement had been done since 2004. The final results were published on Oct. 12, 2023.

This landmark result measured the tau wobble to two decimal places. Much to our astonishment, this method tied the previous best measurement using only one month of data recorded in 2018.

After no experimental progress for nearly 20 years, this result opens an entirely new and important path toward the tenfold improvement in precision needed to test Standard Model predictions. Excitingly, more data is on the horizon.

The Large Hadron Collider just restarted lead ion data collection on Sept. 28, 2023, after routine maintenance and upgrades. Our team plans to quadruple the sample size of lead ion near-miss data by 2025. This increase in data will double the accuracy of the measurement of the tau magnetic moment, and improvements to analysis methods may go even further.

Tau particles are one of physicists’ best windows to the enigmatic quantum world, and we are excited for surprises that upcoming results may reveal about the fundamental nature of the universe.

The Conversation

Jesse Liu, Research Fellow in Physics, University of Cambridge and Dennis V. Perepelitsa, Associate Professor of Physics, University of Colorado Boulder

This article is republished from The Conversation under a Creative Commons license. Read the original article.

X
This website uses cookies to enhance user experience and to analyze performance and traffic on our website. We also share information about your use of our site with our social media, advertising and analytics partners. Learn More / Do Not Sell My Personal Information
Accept Cookies
X
Cookie Preferences Cookie List

Do Not Sell My Personal Information

When you visit our website, we store cookies on your browser to collect information. The information collected might relate to you, your preferences or your device, and is mostly used to make the site work as you expect it to and to provide a more personalized web experience. However, you can choose not to allow certain types of cookies, which may impact your experience of the site and the services we are able to offer. Click on the different category headings to find out more and change our default settings according to your preference. You cannot opt-out of our First Party Strictly Necessary Cookies as they are deployed in order to ensure the proper functioning of our website (such as prompting the cookie banner and remembering your settings, to log into your account, to redirect you when you log out, etc.). For more information about the First and Third Party Cookies used please follow this link.

Allow All Cookies

Manage Consent Preferences

Strictly Necessary Cookies - Always Active

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data, Targeting & Social Media Cookies

Under the California Consumer Privacy Act, you have the right to opt-out of the sale of your personal information to third parties. These cookies collect information for analytics and to personalize your experience with targeted ads. You may exercise your right to opt out of the sale of personal information by using this toggle switch. If you opt out we will not be able to offer you personalised ads and will not hand over your personal information to any third parties. Additionally, you may contact our legal department for further clarification about your rights as a California consumer by using this Exercise My Rights link

If you have enabled privacy controls on your browser (such as a plugin), we have to take that as a valid request to opt-out. Therefore we would not be able to track your activity through the web. This may affect our ability to personalize ads according to your preferences.

Targeting cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.

Social media cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

If you want to opt out of all of our lead reports and lists, please submit a privacy request at our Do Not Sell page.

Save Settings
Cookie Preferences Cookie List

Cookie List

A cookie is a small piece of data (text file) that a website – when visited by a user – asks your browser to store on your device in order to remember information about you, such as your language preference or login information. Those cookies are set by us and called first-party cookies. We also use third-party cookies – which are cookies from a domain different than the domain of the website you are visiting – for our advertising and marketing efforts. More specifically, we use cookies and other tracking technologies for the following purposes:

Strictly Necessary Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Functional Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Performance Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Social Media Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Targeting Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.