Unbreakable: A Robot That Can't Be Stopped

Antoine Cully / Pierre and Marie Curie University

New research shows that artificial intelligence can use trial and error to finish a job even when a robot's body is damaged.

It almost looks like a wounded animal.

There’s that little hop in its gait, the way it looks tentative as it springs forward from its haunches, the not-exactly-straight trajectory of its path. Except this isn’t an injured animal. It is a robot. And even with two broken legs, this hexapod can figure out how to keep going.

Which means that what looks like a slightly sad (if persistent) hunk of metal making its way across a hard floor represents something much bigger, actually. New research published on Wednesday in Nature finds that machines can change their behavior to adapt to being broken—they can learn and iterate based on self-reflection. In other words, they can act like animals.

“Animals understand the space of possible behaviors and their value from previous experience,” the researchers Antoine Cully, Jeff Clune, Danesh Tarapore, and Jean-Baptiste Mouret wrote in Nature. “The key insight here is that robots could do the same.”

The authors of the study refer to their work as an “intelligent trial-and-error algorithm,” and they emphasize how different it is from earlier research in the realm of what’s known as reinforced learning. The way it works: A robot realizes it isn’t moving the way it ought to, so it tests alternative ways of getting where it needs to go based on an extensive database of movements.

“The robot does not know exactly that it is broken,” the researchers wrote in a statement about their work. “It only knows that its performance has suddenly dropped. It has no internal sensors to detect whether any of its components are damaged.” (The lack of sensors is key because it means building these systems would be much cheaper, they say.)

As the robot tests alternative movements, it continuously updates it database of options—having used a computer simulation of itself to create a sort of how-to-walk map ahead of time. Researchers call this testing phase a “simulated childhood,” and it’s a little bit like what a baby does when she’s learning how to crawl. Only the robot takes minutes—not weeks or months—to test and determine the movements that will work best.

This is much faster, the authors say, than previous attempts. And that’s in part because although the robot is sifting through about 13,000 possible movements, they are all options that the robot has already deemed potentially useful.

“The space of all possible behaviors that is searched to find these 13,000 high-performing behaviors is unimaginably vast,” they wrote. “In fact, it contains 10^47 possible behaviors, which is about how many atoms make up the planet Earth!”

Researchers experimented with both a hexapod robot and a robotic arm, and they believe their algorithm could be used to enable any kind of robot to adapt to damage and complete a mission. Over the course of hundreds of tests, the six-legged robot was able to adapt to at least six different types of damage—including completely losing two legs—and the robot arm was able to adapt to at least 14 kinds of damage, including having two of its motors broken.

Perhaps all this evokes images of Westworld, or of The Terminator, or at least of an assembly line that never breaks down. A robot that can break and keep going anyway is, after all, a robot that doesn’t need people. Or needs them less than its robot predecessors did, anyway. The potential uses for such machines are incredible to imagine. These things could skitter across Mars, or explore an ocean trench, or crawl over rubble to help search for victims after an earthquake.

Scientists and engineers have been working on perfecting such algorithms for more than a decade. And in 2006, when researchers at Cornell built a robot that could teach itself how to limp, one scientist said the behavior was a form of consciousness.

"Whether humans or animals are conscious in a similar way—do we also think in terms of a self-image, and rehearse actions in our head before trying them out—is still an open question," researcher Josh Bongard told the university’s news service at the time

Elsewhere, researchers have designed robots with squishy, self-healing muscles, robotic cubes that can apparently clone themselves, tiny robots that can assemble themselves in the first place, and giant robots that can hurl cinder blocks. The fields of robotics, machine learning, and artificial intelligence are making gains so rapidly it can be hard to keep track.

The work that culminated in Wednesday’s Nature paper began in 2011. The intelligent algorithm at the center of the research turned out to be astonishing even to the people who designed it.

Here’s a story they like to tell that explains why: To build a map of potential movements for the robot, they used a formula that would generate different ways of walking. It was based on the percentage of time a robot had its feet touching the ground. So the robot would figure out how to move one way when only 50 percent of its legs touched the ground, and another way when 75 percent of its legs touched the ground, and so on. Naturally, researchers figured the robot wouldn’t do anything when its feet weren’t touching the ground at all.

They were wrong.

“It surprised us!” the researchers wrote. “It flipped over on its back and crawled on its elbows with its feet in the air.”

X
This website uses cookies to enhance user experience and to analyze performance and traffic on our website. We also share information about your use of our site with our social media, advertising and analytics partners. Learn More / Do Not Sell My Personal Information
Accept Cookies
X
Cookie Preferences Cookie List

Do Not Sell My Personal Information

When you visit our website, we store cookies on your browser to collect information. The information collected might relate to you, your preferences or your device, and is mostly used to make the site work as you expect it to and to provide a more personalized web experience. However, you can choose not to allow certain types of cookies, which may impact your experience of the site and the services we are able to offer. Click on the different category headings to find out more and change our default settings according to your preference. You cannot opt-out of our First Party Strictly Necessary Cookies as they are deployed in order to ensure the proper functioning of our website (such as prompting the cookie banner and remembering your settings, to log into your account, to redirect you when you log out, etc.). For more information about the First and Third Party Cookies used please follow this link.

Allow All Cookies

Manage Consent Preferences

Strictly Necessary Cookies - Always Active

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data, Targeting & Social Media Cookies

Under the California Consumer Privacy Act, you have the right to opt-out of the sale of your personal information to third parties. These cookies collect information for analytics and to personalize your experience with targeted ads. You may exercise your right to opt out of the sale of personal information by using this toggle switch. If you opt out we will not be able to offer you personalised ads and will not hand over your personal information to any third parties. Additionally, you may contact our legal department for further clarification about your rights as a California consumer by using this Exercise My Rights link

If you have enabled privacy controls on your browser (such as a plugin), we have to take that as a valid request to opt-out. Therefore we would not be able to track your activity through the web. This may affect our ability to personalize ads according to your preferences.

Targeting cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.

Social media cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

If you want to opt out of all of our lead reports and lists, please submit a privacy request at our Do Not Sell page.

Save Settings
Cookie Preferences Cookie List

Cookie List

A cookie is a small piece of data (text file) that a website – when visited by a user – asks your browser to store on your device in order to remember information about you, such as your language preference or login information. Those cookies are set by us and called first-party cookies. We also use third-party cookies – which are cookies from a domain different than the domain of the website you are visiting – for our advertising and marketing efforts. More specifically, we use cookies and other tracking technologies for the following purposes:

Strictly Necessary Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Functional Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Performance Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Social Media Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Targeting Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.