Hi-Tech Pods That Allow Human Beings to Hibernate for Long-Distance Space Travel Are About to Become a Reality

Alones/Shutterstock.com

“Our goal is to get from days and weeks to months,” says Bradford, who says the medical equipment used for therapeutic hypothermia can easily be automated and made space-ready.

On Oct. 7, 2006, Mitsutaka Uchikoshi left a barbecue on Mt. Rokko in western Japan, deciding to walk down the mountain rather than taking a cable car with his friends. He lost his way, slipped, broke his pelvis and, with nobody around to help, eventually lost consciousness. Twenty-four days later, a passing climber found Uchikoshi. His body temperature had fallen to 22 degrees Celsius (normal is around 37), his pulse was barely discernable, and his metabolism was almost at a standstill. But despite multiple organ failures and significant blood loss, with no food nor water, he survived somehow, and fully recovered.

Uchikoshi was declared the first documented case of human hibernation. His story instantly drew the attention of the medical community, which hoped it would give rise to new therapies.

Among those interested was John A. Bradford, president of Spaceworks, a US company developing technologies for space exploration based in Atlanta, Georgia. Bradford, however, didn’t want to develop treatments for medical conditions; he wanted to find a way to hibernate crews on long-distance spaceflights.

“I’m a big science fiction fan, so it was a little bit about making science fiction a reality,” says Bradford. “But first and foremost, I’m a space engineer working with manned missions to Mars and other destinations within our solar system on my mind. And from that perspective, human stasis makes a lot of sense.” If the crew is asleep, that makes reduces amount of food and life support systems needed, thus bringing down overall ship mass—and costs—significantly.

Bradford and his team focused their efforts on “therapeutic hypothermia”, a well-established procedure used in hospitals all over the world, performed on thousands of patients to treat cardiac arrest or traumatic brain injury. It amounts to slowly cooling the body to 32-34 C, usually one degree per hour, which slows down heart rate and lowers blood pressure to give medical teams more time to work on treating acute heart and brain issues. Typically, a patient stays in stasis for 2-4 days, though there have been instances where doctors chose to keep their patient in this state for as long as two weeks—without any complications. And the Uchikoshi case showed it’s possible to survive an even longer cooling procedure.

“Our goal is to get from days and weeks to months,” says Bradford, who says the medical equipment used for therapeutic hypothermia can easily be automated and made space-ready. It’s already small, low-powered, easy to use, and portable enough to be carried in ambulances.

Spaceworks’ stasis chamber will probably look much like they usually do in science fiction movies—with a few key differences. “Personal stasis pods have some advantages. You can control everyone’s ambient temperature individually. They also come in handy in case of breakdown or an emergency like pathogen,” says Bradford. But that sort of design would add lots of weight to the spaceship. That’s why Spaceworks’ engineers are leaning toward an open, shared stasis chamber. “There would be some robotic arms and monitoring systems taking care of [the passengers]. They’d have small transnasal tubes for the cooling and some warming systems as well, to bring them back from stasis,” says Bradford.

Spaceworks
An artist’s rendering of what Spaceworks’ human stasis pods would look like.

The real-world stasis will also differ from Hollywood visions in that the crew won’t sleep through the whole flight. Spaceworks’ team has interviewed several medical experts and most of them agree that shorter, repeat cycles of going in and out of stasis would be safer than a single, long-term cycle. One reason is that would ensure one crewmember would always be awake as a caretaker, taking his or her watch monitoring the spaceship’s systems and responding to emergencies. “So, for the near term—the next 20, 30, 40 years—we can work with something like two weeks’ stasis capability,” says Bradford.

But there are a few obstacles to overcome. Our bodies are not designed for low-gravity environments: Bones and muscles, relieved from their usual duty of supporting our weight, gradually lose mass up to the point where people become partially crippled. The heart, designed to pump blood up to the brain against the gravity, does its job a bit too well in space. That’s why astronauts suffer from increased intracranial blood pressure, which leads to vision impairment. One solution would be to build a spaceship with artificial gravity, but that’s probably prohibitively costly. Another is to make sure the crew exercises a lot, like those onboard the International Space Station do today. But a crew wouldn’t be able to exercise while in the stasis. Or would they?

“We have ideas how to exercise them,” says Bradford. One is called “neuromuscular electrical stimulation,” which entails sending small electrical impulses through the body, triggering muscles to contract. “There are very promising results in using this technique on comatose patients to prevent muscle atrophy,” Bradford says. In space, that could be accompanied by administering drugs to mitigate the effects of microgravity on bone mass.

As for increased intracranial pressure, therapeutic hypothermia is specifically used today as a countermeasure to that exact condition.

Spaceworks wants to start animal testing in 2018, then proceed to tests with healthy human subjects and, possibly, perform experiments onboard the ISS. But the team’s vision goes much further than just flying to Mars, or even to the Jupiter system. They are already thinking about how to support hundreds of passengers on an interstellar mission. Bradford believes it’s realistic to imagine a system that brings core body temperature down by a few degrees, metabolic rate by 50% to 70%, and extends the stasis period from weeks to months.

An artist's rendering of what Spaceworks' human stasis pods would look like.
Spaceworks human stasis system would use sleep cycles; some crewmembers would be asleep while others kept the ship running. (Spaceworks)

But what about those cryo-chambers in Hollywood’s vision of interstellar travel, that let space voyagers sleep for hundreds of years? After all, real deep space travel will take a least dozens of years, if not hundreds and thousands, right?

Well, Hollywood got it all wrong. The reality is way crazier.

“Our way to colonize the universe is open, and we don’t need fancy things defying known physics to do this,” says John Ellis, a physicist working at CERN in Geneva, Switzerland. As he told me at a conference back in 2015:

Einstein’s relativity makes that perfectly possible. Let’s take Alpha Centauri, a little more than 4.3 light years away from us. If only we could accelerate a spaceship to, say, 0.8 the speed of light, the time dilation would really kick in. The journey would last more than five years, as measured by clocks on Earth, but only few months, as measured by clocks onboard the spaceship. And the journey will get shorter for the crew, the closer they get to the speed of light. A few months of flight is all the future astronauts will need.

X
This website uses cookies to enhance user experience and to analyze performance and traffic on our website. We also share information about your use of our site with our social media, advertising and analytics partners. Learn More / Do Not Sell My Personal Information
Accept Cookies
X
Cookie Preferences Cookie List

Do Not Sell My Personal Information

When you visit our website, we store cookies on your browser to collect information. The information collected might relate to you, your preferences or your device, and is mostly used to make the site work as you expect it to and to provide a more personalized web experience. However, you can choose not to allow certain types of cookies, which may impact your experience of the site and the services we are able to offer. Click on the different category headings to find out more and change our default settings according to your preference. You cannot opt-out of our First Party Strictly Necessary Cookies as they are deployed in order to ensure the proper functioning of our website (such as prompting the cookie banner and remembering your settings, to log into your account, to redirect you when you log out, etc.). For more information about the First and Third Party Cookies used please follow this link.

Allow All Cookies

Manage Consent Preferences

Strictly Necessary Cookies - Always Active

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data, Targeting & Social Media Cookies

Under the California Consumer Privacy Act, you have the right to opt-out of the sale of your personal information to third parties. These cookies collect information for analytics and to personalize your experience with targeted ads. You may exercise your right to opt out of the sale of personal information by using this toggle switch. If you opt out we will not be able to offer you personalised ads and will not hand over your personal information to any third parties. Additionally, you may contact our legal department for further clarification about your rights as a California consumer by using this Exercise My Rights link

If you have enabled privacy controls on your browser (such as a plugin), we have to take that as a valid request to opt-out. Therefore we would not be able to track your activity through the web. This may affect our ability to personalize ads according to your preferences.

Targeting cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.

Social media cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

If you want to opt out of all of our lead reports and lists, please submit a privacy request at our Do Not Sell page.

Save Settings
Cookie Preferences Cookie List

Cookie List

A cookie is a small piece of data (text file) that a website – when visited by a user – asks your browser to store on your device in order to remember information about you, such as your language preference or login information. Those cookies are set by us and called first-party cookies. We also use third-party cookies – which are cookies from a domain different than the domain of the website you are visiting – for our advertising and marketing efforts. More specifically, we use cookies and other tracking technologies for the following purposes:

Strictly Necessary Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Functional Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Performance Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Social Media Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Targeting Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.