recommended reading

These Molecule-sized Wires Could Stop the Computer Industry From Hitting a Brick Wall

The DNA-sized nanowires in the center of this magnified chip could keep the electronics industry from burning out.

The DNA-sized nanowires in the center of this magnified chip could keep the electronics industry from burning out. // MITRE

In case you missed it, the end of the age of ever-faster computers is nigh. In his speech (pdf) at last summer’s Hot Chip conference, Bob Colwell, Intel’s former chief architect, said Moore’s law—the prediction that computer power doubles every 18-24 months, which has held largely true since Intel co-founder Gordon Moore made it in 1965—will cease to hold by 2020.

Colwell’s prognosis is dire, but not everyone is accepting it. On Jan. 23, a joint team from Harvard and the non-profit defense contractor MITRE challenged the repeal of Moore’s law with an ultra-dense, nano-scale processor that could add time to computing’s Doomsday Clock.

The sheer number of circuits that can fit on a processor is called the transistor count. Generally speaking, Moore’s law states that processors will double their transistor count every couple of years. A transistor is basically a switch that both stores and processes data; the more of them a computer contains, the more memory and power it has.

The problem is, processors are built with silicon. As silicon transistors get more and more dense, they need more power and better cooling. In other words, it’s not that we can’t design faster chips, it’s just too expensive and difficult to keep them running.

The Harvard/MITRE team’s chip—called the nanoFSM—saves power, and creates less heat, through a combination of size and design. Not only do the tiny wire transistors need less energy, but they are “nonvolatile.” This means that they don’t need a constant electrical current to remember how they’ve been programmed, unlike regular transistors. The nanowires are so-named because they are measured on the nanometer scale, along with DNA and viruses. Where an Intel Core i7—a chip at the heart of high-end personal computers—is roughly the size of a small coin, the prototype nanoFSM would be a speck of dust on the coin’s face (though it’s also less powerful).

Computers can’t keep getting faster forever, but it’s no surprise that the industry wants to stave off the end of the Moore’s law era as long as it can. Without the constant doubling of computer power we wouldn’t have iPads, IBM’s Watson supercomputer, or the internet. Engineers started worrying about the end of Moore’s law around 2005, when the ever-smaller chips stopped being able to outrun the laws of physics that govern heat dissipation.

Nanowires aren’t new, but this is the first time they’ve been made into transistors that can do math and remember information. This technically makes the nanoFSM a computer, but barely so. Currently, the chip is little more sophisticated than all but the earliest digital processors. If it’s going to save Moore’s law, nanoFSM’s creators still need to prove that they can scale this technology up to handle heavier workloads without succumbing to the same problems that threaten the law now—let alone completely new ones.

Reprinted with permission from Quartz. The original story can be found here

Threatwatch Alert

Thousands of cyber attacks occur each day

See the latest threats


Close [ x ] More from Nextgov

Thank you for subscribing to newsletters from
We think these reports might interest you:

  • It’s Time for the Federal Government to Embrace Wireless and Mobility

    The United States has turned a corner on the adoption of mobile phones, tablets and other smart devices, outpacing traditional desktop and laptop sales by a wide margin. This issue brief discusses the state of wireless and mobility in federal government and outlines why now is the time to embrace these technologies in government.

  • Featured Content from RSA Conference: Dissed by NIST

    Learn more about the latest draft of the U.S. National Institute of Standards and Technology guidance document on authentication and lifecycle management.

  • A New Security Architecture for Federal Networks

    Federal government networks are under constant attack, and the number of those attacks is increasing. This issue brief discusses today's threats and a new model for the future.

  • Going Agile:Revolutionizing Federal Digital Services Delivery

    Here’s one indication that times have changed: Harriet Tubman is going to be the next face of the twenty dollar bill. Another sign of change? The way in which the federal government arrived at that decision.

  • Software-Defined Networking

    So many demands are being placed on federal information technology networks, which must handle vast amounts of data, accommodate voice and video, and cope with a multitude of highly connected devices while keeping government information secure from cyber threats. This issue brief discusses the state of SDN in the federal government and the path forward.

  • The New IP: Moving Government Agencies Toward the Network of The Future

    Federal IT managers are looking to modernize legacy network infrastructures that are taxed by growing demands from mobile devices, video, vast amounts of data, and more. This issue brief discusses the federal government network landscape, as well as market, financial force drivers for network modernization.


When you download a report, your information may be shared with the underwriters of that document.