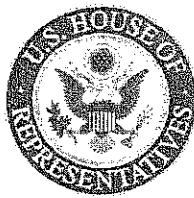


STENOGRAPHIC MINUTES
Unrevised and Unedited
Not for Quotation or
Duplication

COMMERCE, JUSTICE, SCIENCE, AND RELATED AGENCIES

APPROPRIATIONS FOR 2018


Wednesday, June 7, 2017

NATIONAL SCIENCE FOUNDATION

Committee Hearings

of the

U.S. HOUSE OF REPRESENTATIVES

OFFICE OF THE CLERK
Office of Official Reporters

1 HUNT REPORTING COMPANY

2 RPTS HOFER

3 HAP158.190

4 COMMERCE, JUSTICE, SCIENCE, AND RELATED AGENCIES

5 APPROPRIATIONS FOR 2018

6 Wednesday, June 7, 2017

7 NATIONAL SCIENCE FOUNDATION

8 COMMERCE, JUSTICE, SCIENCE, AND RELATED AGENCIES

9 APPROPRIATIONS FOR 2018

10 Wednesday, June 7, 2017

11 NATIONAL SCIENCE FOUNDATION

12 WITNESS

13 DR. FRANCE CORDOVA, DIRECTOR, NATIONAL SCIENCE FOUNDATION

14 Mr. CULBERSON. The Commerce, Justice, and Science
15 Appropriations Subcommittee will come to order. We are
16 delighted to have with us this morning the Director of the
17 National Science Foundation, Dr. France Cordova. We
18 sincerely appreciate your service to the nation, Dr. Cordova.
19 You have had a distinguished career both in government and
20 academia. We share a common passion for astronomy and
21 astrophysics. I know that is your area of specialty. I am
22 looking forward to hearing you talk to us a little bit today
23 about this extraordinary most recent detection of a third
24 gravitational wave. That is right up your alley.

25 We have on this subcommittee always enjoyed bipartisan
26 arm in arm support when it comes to investments in
27 fundamental research at the National Science Foundation and
28 NASA. Everyone on this subcommittee is here because we share
29 a common passion for ensuring that the United States
30 maintains its, has the world's best space program and the
31 world's best fundamental scientific research. When it comes
32 to peer reviewed scientific research, the National Science
33 Foundation does a superb job. And your budget is
34 extraordinarily important as the National Science Foundation
35 represents about 60 percent of the federal government's
36 annual investment in basic research that is conducted at U.S.
37 colleges and universities, not including the research that is
38 done by the National Institutes of Health in the

39 | extraordinarily important work that they do in fighting
40 | cancer and other dread diseases.

41 | In many fields the National Science Foundation is the
42 | primary source of federal academic support. May 2017, just
43 | this past month, marked the National Science Foundation's
44 | 67th anniversary, an extraordinarily important milestone. We
45 | are looking forward to more successful discoveries in the
46 | future when it comes to understanding the fundamental
47 | building blocks of the universe and the universe all around
48 | us.

49 | In fiscal year 2018, the National Science Foundation is
50 | requesting \$6.7 billion, which is a decrease of \$819 million,
51 | is what the President's budget proposes, about 11 percent
52 | below the current fiscal year. Now we do not know yet what
53 | our subcommittee's allocation is going to be for 2018. The
54 | budget process has unavoidably gotten off to a slower start
55 | than normal. But the committee is going to work arm in arm
56 | to ensure that NSF is appropriately funded and we preserve
57 | American leadership in scientific research.

58 | I would like to add that while we wholeheartedly support
59 | NSF's basic research in sciences, all of us are mindful of
60 | the fact that our constituents' tax dollars very scarce, very
61 | precious, and hard-earned. So we are counting on you to be
62 | good stewards of that precious resource.

63 | Before we proceed I would like to recognize the

64 gentleman from New York, Mr. Serrano, for any remarks he
65 would like to make.

66 [The information follows:]

67 *******INSERT*******

68 Mr. SERRANO. Thank you, Mr. Chairman, and thank you,
69 Ms. Cordova, for being with us today. It is good to have you
70 with us today and as the chairman said, you have a
71 distinguished career and much more to come.

72 The National Science Foundation is vital in promoting
73 basic research and education in science and engineering. In
74 doing so, it is a major source of federal support for U.S.
75 university research in the STEM fields. NSF's investments in
76 STEM education also help train the next generation of
77 scientists and engineers. As you know, Dr. Cordova, I am a
78 strong supporter of NSF and believe that its programs help
79 our nation be the world leader in major discoveries,
80 innovations, and scientific breakthroughs.

81 The President's budget blueprint for fiscal year 2018
82 requests \$6.65 billion for NSF, which is an \$822 million or
83 11 percent decrease from 2017. It is the first time in the
84 67-year history of this agency that a President has proposed
85 a budget below the previous fiscal year. The result is
86 deeply troubling.

87 Within the total the President's budget also proposes
88 \$5.63 billion for the Research and Related Activities
89 Account, which is a cut of \$672 million, or 10.6 percent.
90 This level of funding endangers the core missions at NSF. For
91 example, if the requested amount is enacted into law the
92 number of competitive awards for fiscal year 2018 would go

93 down from 11,900 awards per year to 10,800, a reduction of
94 more than 1,000 awards. In a given year NSF grants awards to
95 over 1,800 colleges, universities, and other public and
96 private institutions in 50 states, the District of Columbia,
97 and Puerto Rico. Cutting funding for NSF will leave many
98 schools without much needed education and research funding. I
99 strongly oppose this proposed budget cut.

100 Another area cut by the President's request is the
101 Educational and Human Resources Account, which is requested
102 at \$760.6 million. This represents a cut of \$123.5 million
103 or 14 percent. The President's budget proposal accomplishes
104 this by cutting initiatives that increase STEM participation,
105 including programs that help underrepresented minorities. The
106 request also cuts reducing the number of graduate research
107 fellowships by 50 percent. No funding is requested at all
108 for a program that I worked to authorize, the new Hispanic
109 Serving Institutions Program.

110 Mr. Chairman, I have been a strong support of Hispanic
111 serving institutions and minority serving institutions since
112 I arrived in Congress more than two decades ago. Last year
113 Congress mandated the NSF establish a new HSI program and we
114 appropriated \$15 million in the fiscal year 2017 bill for
115 this effort. Notwithstanding the clear evidence that HIS's
116 need this funding, the budget proposal does not fund this
117 program in fiscal year 2018. This negatively affects

118 constituents, by the way, in both Republican and Democratic
119 districts alike.

120 Another issue of importance to me is the Arecibo
121 Observatory in Puerto Rico. The President's budget for NSF
122 in fiscal year 2018 proposes a total of \$7.72 million for the
123 observatory, which is a reduction of \$480,000 from 2017. Due
124 to the quality of work taking place at the Arecibo
125 Observatory and the need for maintenance and repairs, I
126 strongly oppose this proposed cut. I know the NSF is
127 currently debating the future of the observatory. But I
128 believe the federal government must maintain an adequate
129 level of involvement and support for Arecibo.

130 Overall the NSF's budget request for this year is an
131 extreme example of the problems with the President's proposal
132 to increase defense spending by \$54 billion at the expense of
133 domestic priorities. There is little justification for
134 cutting vital agencies, like NSF, simply to fund a Defense
135 Department already receiving more than half a trillion
136 dollars each year.

137 The discoveries attained by investing in NSF help our
138 economy grow, sustain our economic competitiveness, and
139 enable us to remain the world leader in innovation. I would
140 note that countries like China are not cutting back on their
141 involvement and investment in the sciences. And unless we
142 shore up the NSF's ability to invest in research, our global

143 leadership in a large number of scientific fields will be
144 threatened. That is a serious national security threat.
145 Unless we have the funding to promote our nation's values
146 beyond defense, our leadership in the sciences is not the
147 only thing that will be threatened.

148 That you once again, Dr. Cordova, for being with us. And
149 let me just tell you something. You are before a committee
150 that is unique in one way. When it comes to this agency, the
151 chairman and the ranking member agree totally. It is a great
152 agency and it is one that should be funded properly. He has
153 got his limitations with the budget. I have my bully pulpit.

154 I am not chairman right now. I was, and then I had the
155 problems with the budget. But rest assured that we have an
156 interest that is not seen on many other committees where we
157 agree on one agency as much as we agree on this one. Thank
158 you. Thank you, Mr. Chairman.

159 [The information follows:]

160 *****INSERT*****

161 Mr. CULBERSON. You bet. And Mr. Serrano is exactly
162 right. We are arm in arm. This whole subcommittee is arm in
163 arm when it comes to our support for fundamental research,
164 the spectacular work done by the National Science Foundation
165 and NASA. We are all of us committed to preserving American
166 leadership in fundamental research and in space exploration.

167 And I also want to express my agreement with Mr. Serrano
168 when it comes to Arecibo. We have had previous budgets
169 recommend cutting or reducing, even eliminating Arecibo and
170 we have always stood behind it. Because it is a national
171 strategic asset. It is a unique radio observatory that has
172 unique capabilities that we simply cannot permit to fall by
173 the wayside. I know you are looking at options about what to
174 do about Arecibo in the future. But Arecibo and Green Bank
175 in West Virginia, we strongly support the preservation of
176 those vital facilities and frankly the expansion of the great
177 work you are doing in astrophysics, whether it be in radio or
178 visible light or in the area I am looking forward to hearing
179 you talk about, the dawn of the era of gravitational wave
180 astronomy. We are looking forward to hearing you talk about
181 that this morning.

182 We are delighted to have you with us today. We thank
183 you for your service to the nation. Your written testimony
184 will be entered into the record in its entirety, without
185 objection. And at this time we would welcome your brief

186 summary of your testimony. Thank you very much.

187 Ms. CORDOVA. Thank you, Chairman Culberson, Ranking
188 Member Serrano, and members of the subcommittee. I am very
189 pleased to be here today to discuss the National Science
190 Foundation's budget request for fiscal year 2018. And thank
191 you both for your heartfelt remarks.

192 NSF is the only federal agency dedicated to the support
193 of basic research and education across all fields of science
194 and engineering. We support research that enhances our
195 nation's security, drives the U.S. economy, and advances our
196 knowledge to sustain America's technological leadership. And
197 the results of that research enhance the lives of millions of
198 Americans everyday.

199 The President's NSF budget request for fiscal year 2018
200 is approximately \$6.6 billion, a reduction of over 11 percent
201 from the fiscal year 2017 appropriation.

202 You already have my full written testimony so I would
203 like to use this time to give some specific examples of how
204 forward looking NSF investments are benefitting the American
205 people.

206 NSF has long been a leader in information technology
207 research, funding foundational research in computer science,
208 helping to launch the internet, supporting advances in high
209 performance super computers, and investing in cyber security
210 research and education. On the first page of your handout

211 that is in front of you, it looks like this, you will see Dr.
212 Rajkumar of Carnegie Mellon University loading software into
213 an NSF funded self-driving automobile. This research builds
214 on decades of NSF funded research in precision sensors,
215 computer vision, real time data analytics, and artificial
216 intelligence or AI. Researchers estimate that driverless
217 cars could reduce traffic fatalities by up to 90 percent by
218 mid-century.

219 NSF funded AI research also has broad impacts for
220 health. For example, page two of your handout shows Dr.
221 Suchi Saria, Assistant Professor at Johns Hopkins, who
222 recently developed an AI program integrating data from
223 patient health records to identify factors capable of
224 predicting septic shock. Septic shock is a rapid immune
225 response to infection that can cause organ failure, leading
226 to more than 200,000 U.S. deaths annually. Early symptoms
227 are notoriously difficult to spot, but with Dr. Saria's
228 combining and analyzing of numerous health factors her
229 program can accurately predict septic shock 85 percent of the
230 time, often before organs are harmed. Imagine the impact
231 this NSF funded tool will have on people's lives.

232 These two examples from transportation and health of the
233 power of artificial intelligence and machine learning to
234 transform lives are at the heart of the shaping of the
235 future at the human technology frontier, which is one of our

236 ten big ideas.

237 Similarly NSF's investment has led to breakthrough
238 manufacturing technologies, as illustrated on page three of
239 your handout. NSF provided critical early support for the
240 techniques behind additive manufacturing, sometimes called
241 3-D printing, that were discovered and patented during the
242 1980s and today 3-D printing has become a \$5 billion a year
243 industry.

244 In this image you see Harvard's Jennifer Lewis, who uses
245 materials such as hydrogels, to create architectures that
246 mimic those found in nature, such as bone and spider webs and
247 vascular networks. Such advanced 3-D printing techniques
248 suggest we may soon be able to grow organ replacements using
249 a person's own tissue. Just imagine the lives that will be
250 saved.

251 Finally, as an astrophysicist myself I cannot resist
252 citing NSF's pivotal role in advancing the era of
253 multi-messenger astrophysics. It is already enhancing our
254 understanding of the universe and revealing its mysteries and
255 is another of NSF's ten big ideas. With ground based
256 telescopes and particle and gravitational wave observatories
257 in the U.S. and abroad, we are hopeful that some of the
258 biggest discoveries are in reach, unveiling for example the
259 nature of dark energy and dark matter.

260 Because of the ingenuity of inventors and dreamers such

261 as MIT researcher Nergis Mavalvala, who is shown on page four
262 of your handout, we increasingly have the capabilities to
263 address these profound mysteries. The NSF funded LIGO
264 facilities detected gravitational waves, which are ripples in
265 the fabric of space time, for the first time in 2015. And
266 just last week, as the chairman referenced, they made a third
267 detection of gravitational waves, this time from a binary
268 black hole source about three billion light years away.
269 Without NSF's consistent funding over the past four decades,
270 we would not have been able to make these kinds of
271 discoveries. It is important to note that these types of
272 projects are made possible because of our country's unique
273 ability to perform complex systems engineering, integrating
274 the talents of scientists and engineers who work together to
275 achieve such results.

276 Mr. Chairman and members, these are only a few of the
277 thousands of trail-blazing awards that NSF funds every year.
278 On behalf of those talented scientists and engineers and the
279 employees of the National Science Foundation, I would like to
280 thank this subcommittee for its longstanding support of our
281 agency and our continued goal to keep our nation at the very
282 forefront of the global science and engineering enterprise.

283 And I would like to acknowledge the presence of the
284 National Science Board Chair Maria Zuber and Vice Chair Diane
285 Souvaine in the audience, and I am open to your questions.

286 | Thank you.

287 | [The information follows:]

288 | *******INSERT*******

289 Mr. CULBERSON. Thank you, Dr. Cordova. We wanted to
290 ask about the black hole merger and the gravitational waves.
291 It is a great illustration I think, and if you could I would
292 ask you to expand a little bit on the importance of the
293 Congress providing sufficient funding to NSF over a sustained
294 period of time for projects that might not immediately appear
295 to have benefit or gain. The LIGO detection, if you could
296 talk to us about that length of time that the investment was
297 made and what the hope was. And of course, just this year
298 was, in fact on Christmas Day of 2015, was the first
299 detection of a gravitational wave and the discovery that was
300 just announced last week is the third detection. That
301 discovery took place, how long was the Congress' investment
302 in the Laser Interferometer Gravitational Wave Observatory?
303 And what sum of money was involved? And what significance
304 does that hold for the future, this discovery?

305 Ms. CORDOVA. Well thank you, Mr. Chairman. The NSF has
306 been investing in gravitational wave observing, its
307 potential, for four decades. Since the early nineties we
308 have been funding this particular experiment and more
309 recently an advanced version of it. But integrated over
310 those four decades we have put in \$1.1 billion. And
311 significantly our international partners, and there are 14
312 other countries that participate with us in the LIGO
313 consortium, have put in \$400 million. So about \$1.5 billion

314 over a very long period of time.

315 Much of that money, of course, has gone to observers and
316 students, post-docs, all through that time. And in
317 developing the technology, which as you know this was a huge
318 achievement that Einstein himself when he predicted it now
319 over 100 years ago never thought would be realized because
320 the sensitivity level that needed to be achieved was so very,
321 very great. And he could not envision the kind of technology
322 that would need to be developed to actually detect a
323 gravitational wave. But the scientists and engineers working
324 together did achieve that.

325 It was a slow progression over a couple of decades to
326 finally get the LIGO facilities to be at the right
327 sensitivity to detect just in time a huge event that happened
328 a billion and a half years ago and then was detected during
329 the first actually engineering run of the LIGO observatory in
330 September of 2015. And then now to detect on January 4th the
331 third detection that happened three billion years ago. So we
332 are ready now to observe events that happened billions of
333 years ago.

334 And the other thing, Mr. Chairman and members, that is
335 so very important about this result, it is not only about
336 achieving an amazing goal and over a long period of time
337 which only the federal government can invest in. It is not
338 only about building the kinds of technologies that will have

339 hug spin offs because these are very, if you could look
340 inside the LIGO tubes, the four-kilometer-long tubes, and see
341 the sophistication of the instrumentation and all that that
342 has entailed over decades to build that and appreciate how
343 impactful those can be in other regimes. But it is also
344 about when we actually identified what those sources of
345 gravitational waves were. They turned out to be something
346 that was totally unexpected.

347 And that is the whole business of opening up a new
348 window on the universe, is that you might just see something
349 that you never realized was there before. And in this case
350 with all three LIGO detections they are due to binary black
351 holes, which are large in mass, on the order of 20 to 30
352 solar masses, each component of the black hole. Because they
353 are orbiting each other they are losing angular momentum and
354 eventually they infall into each other and form a single
355 black hole. And when they do that they lose a lot of energy.
356 In the most recent case two solar masses worth; in the first
357 case three solar masses worth. And that is a tremendous
358 amount of energy we cannot even envision. More than the
359 whole universe is putting out is integrated in one instant of
360 time, in just a fraction of a second. And so finding a whole
361 new population of astrophysical phenomenon and then thinking
362 about what that could mean for the evolution of the universe
363 is also another tremendous aspect of these discoveries.

364 Mr. CULBERSON. The first astronomers were using visible
365 light, obviously their eyes, and then telescopes--

366 Ms. CORDOVA. Right.

367 Mr. CULBERSON. --unaware of any electromagnetic
368 radiation outside the visible spectrum. Then we moved into
369 the era of course of radio, infrared astronomy--

370 Ms. CORDOVA. Mm-hmm.

371 Mr. CULBERSON. --ultraviolet astronomy--

372 Ms. CORDOVA. Mm-hmm.

373 Mr. CULBERSON. --x-ray astronomy. Talk about the
374 meaning of this new era that we are entering into, the era of
375 gravitational wave astronomy and what it is that when you say
376 that the holes merged, very quickly, it is a very rapid
377 event.

378 Ms. CORDOVA. Yes.

379 Mr. CULBERSON. The merger of these holes. This--

380 VOICE. This is the long one. And this is the shorter
381 one. And now for the increased pitch.

382 Mr. CULBERSON. That is the first one.

383 Ms. CORDOVA. That is the sound of the universe, yes.
384 That is great. So you have your chirps on your cell phone.

385 Mr. CULBERSON. Extraordinary. Talk to us about--

386 Ms. CORDOVA. Are you going to make this your ring
387 tones?

388 Mr. CULBERSON. Yeah.

389 Ms. CORDOVA. Yeah--

390 Mr. CULBERSON. Talk to us about the significance of
391 what we are hearing. We are seeing a very narrow band of--

392 Ms. CORDOVA. Listening to the universe now, which is
393 just great. As you pointed out, chairman, we first were
394 investigating the universe through electromagnetic means, all
395 the way from the radio to the x-ray and gamma ray parts of
396 the electromagnetic spectrum. And then we built particle
397 detectors, like the great detector that NSF is involved in at
398 CERN, and the neutrino detectors. We have one called Ice
399 Cube at the South Pole so we can also look at the universe
400 and the high energy particles that come from exotic sources.
401 And now we have opened up a third window, the gravitational
402 window. And as I said, we are observing new phenomenon. And
403 yes, you are absolutely correct. That just as the
404 electromagnetic spectrum has a very large, embraces a lot of
405 frequencies or wavelengths, so does the gravitational
406 spectrum. And with the particular configuration of the
407 observatories that we have on Earth and their size, we can
408 only observe a narrow portion of that spectrum. So who knows
409 what could be observed? What kinds of phenomenon if we could
410 build larger detectors? And those are certainly under
411 conception in space to observe other parts of the frequency
412 spectrum. And on the ground in explorations at the South
413 Pole we are reupping and improving the cosmic microwave

414 background detectors so that they can go after identifying
415 what is called the B polarization or polarization from the
416 gravity waves embedded in the microwave background. So that
417 is looking back to the big bang.

418 So yes, there is a huge amount of spectrum in
419 gravitational waves alone to examine through various means.

420 Mr. CULBERSON. Well I thank the members for allowing me
421 a little extra time. But the significance of this discovery
422 I do not think can be overstated. And how vital it is for
423 the Congress, for the country, to stand behind NSF and make
424 sure that you have got the support, the financial backing
425 over a sustained period of time to continue to unlock the
426 mysteries of the universe. Because the universe is always
427 more extraordinary than we can even imagine. Thank you very
428 much. Mr. Serrano?

429 Mr. SERRANO. Thank you, Mr. Chairman. Fascinating. Now
430 when you get a call it will be the universe calling you. The
431 budget request, Ms. Cordova, we have before us is the deepest
432 cut in NSF history. According to Science Magazine, prior to
433 this year no President, as I said, had ever proposed cutting
434 NSF below its previous year level. Beyond the numbers in
435 terms of dollars, how far does this cut in funding set us
436 back? Can you give us an idea of how many fewer grants will
437 be funded and graduate students trained? Do we endanger our
438 global leadership in the sciences at this level?

439 Ms. CORDOVA. The reduced funding, Congressman Serrano,
440 will of course have an effect because fewer researchers,
441 including students, will receive grants. We estimate that we
442 with this budget would have the wherewithal to fund
443 approximately 8,000 grants whereas in our current 2017 budget
444 we can fund 11 or 12 percent more than that. And the public
445 also will have less benefit from the federal investment in
446 science.

447 That said, the current budget still has considerable
448 resources and we will do our best to select excellent science
449 to fund using input from the National Academy of Sciences,
450 among others, and relying on the efficacy of our merit review
451 process.

452 We are used to making difficult choices. Even in the
453 current year we are leaving up to \$4 billion worth of
454 excellently funded proposals on the cutting room floor that
455 we simply do not have the funding to make and the fiscal year
456 2018 budget makes our choices harder. We would see a lower
457 funding rater, with perhaps \$5 billion of excellent proposals
458 unfunded.

459 Mr. SERRANO. Mm-hmm. Let me ask you a question that is
460 on the mind of some people as we look at the 2017 budget. The
461 budget you have proposed for NSF is frankly quite bleak. I
462 along with several of my colleagues here on the subcommittee,
463 I imagine, are interested in making sure that we do not see a

464 cut like this to your budget. After all, it is the Congress
465 who has the final say in funding matters. With that in mind,
466 I am concerned that the NSF may be taking steps to begin
467 reductions now that have been proposed in fiscal year 2018
468 but not enacted. Can you assure me that fiscal year 2017
469 funding, which we just completed recently, will not be held
470 back in anticipation of a cut that may or may not come in the
471 future?

472 Ms. CORDOVA. I can assure you that we are not holding
473 back. Our fiscal year 2017 budget was a robust budget for
474 fundamental science and we are not anticipating what the 2018
475 budget looks like. We very much understand that Congress
476 is in the driver's seat on the fiscal year 2018 budget.

477 Mr. SERRANO. So we should have no fears that 2017 will
478 be used to cover for 2018 at this point?

479 Ms. CORDOVA. We, I can assure you that we are not using
480 2017 to cover for 2018 and we are letting Congress make the
481 decisions about the 2018 budget of course.

482 Mr. SERRANO. All right. Let me ask you something about
483 the grants. You spoke about the reduction that this budget
484 would reduce or would bring about. Are we seeing an increase
485 in requests for grants? Or has it leveled off?

486 Ms. CORDOVA. We get around 50,000 proposals a year and
487 that number, we are anticipating it could go a little higher,
488 just depending on the situation with all agencies. There are

489 some principal investigators that apply to multiple agencies
490 for their funding. But it is hard to anticipate until we
491 actually see a budget to estimate how many people will apply
492 for grants.

493 I do know that from going around to universities, I was
494 just at a university yesterday talking with a lot of their
495 faculty, that the funding climate can actually discourage
496 people from applying for grants. So we do not really
497 understand the full consequences of whether we will get more
498 grants or fewer grants right now. But 50,000 is a lot of
499 grants to manage and we do that well, I think.

500 Mr. SERRANO. All right. Mr. Chairman, I am at three.
501 So thank you.

502 Mr. CULBERSON. Thank you, Mr. Serrano. Mr. Jenkins?

503 Mr. JENKINS. Thank you, Mr. Chairman. Director
504 Cordova, wonderful to see you. Thank you for our good
505 working relationship over these last couple of years and I
506 enjoyed our phone conversation yesterday. So I am glad you
507 made it back safely.

508 Mr. Chairman, thank you so much for this opportunity.
509 And Director, obviously you and I have had multiple
510 discussions about an asset in my district, Green Bank
511 Observatory, a world class radio observatory. You have
512 mentioned, and the chairman has mentioned, radio astronomy
513 several times. So thank you for your commitment to that. And

514 over these number of years it has received steadfast support
515 from NSF, literally for decades and I appreciate that very
516 much. Because I do believe it is a key resource for radio
517 astronomy and does contribute significant groundbreaking
518 exploration. And in your testimony you mentioned the
519 important aspects of NSF, such as maintaining global
520 leadership in science and in investing in STEM fields. And I
521 firmly believe, and I think we all would agree, that Green
522 Bank does both.

523 It gives students hands on experience in STEM at
524 literally every level. And two of the most compelling
525 stories that I have heard over the last couple of years
526 serving in Congress representing this wonderful asset is some
527 of the work that Green Bank's education programs have been
528 doing from students literally from around the world who do
529 pursue STEM careers.

530 What I would like to ask is while I see the budget, as
531 we have talked about, does maintain and support the GBO, the
532 Green Bank Observatory, at level funding for next year, it
533 has been suggested that potentially in the future years NSF
534 plans may be to divest. Can you share with me kind of what
535 the steps of NSF is at this point vis a vis this next year
536 and the potential for divestment moving forward, which
537 concerns me greatly?

538 Ms. CORDOVA. So Green Bank is one of the observatories

539 that the National Academy of Sciences at the beginning of
540 this decade in its decadal report suggested that in order to
541 do new things, and what was at the time looking at a flat
542 budget scenario, that we would have to consider divesting
543 ourselves of some assets. And so a couple of years later,
544 namely in 2012, a portfolio review committee gathered of
545 astronomers nationwide and recommended that NSF divest itself
546 of the Green Bank telescope, among others.

547 And so since that time, and that has been reaffirmed in
548 a mid-decadal review as well, that is not saying that it is
549 not doing wonderful science. It is only in order to do new
550 things in a constrained budget that we have to let go of some
551 of the things that we have been doing for a longer time.

552 So right now we have undergoing environmental impact
553 study and that on all of the potential divestments, and the
554 results from the Green Bank environmental impact study that
555 will present the National Science Foundation with options for
556 divestment. Those results should be in by the beginning of
557 the next calendar year, early 2018. We do expect a draft
558 report of the environmental impact study in late August or
559 early September and there will be a 45-day comment period for
560 that.

561 As you also pointed out in fiscal year 2018 our budget
562 is approximately the same, even a little bit more, than our
563 fiscal year 2017 estimated budget and that assumes that the

564 ongoing partnerships continue like the partnership with the
565 Breakthrough Prize Foundation.

566 Mr. JENKINS. In my 30 seconds I have left let me
567 summarize and make sure I did understand. So based on the
568 fiscal year 2017 that we are in, based on the fiscal year
569 2018 that is before us, we should be safe and sound for the
570 fiscal year 2018 period. We have got this EIS study
571 scheduled out early next year but a draft with public comment
572 may be in the coming months of this year. But we have got
573 some hurdles but at least at this point in time with the
574 budget that is before us we should be good for the next year
575 and we will address the issues moving forward after that.

576 Ms. CORDOVA. That is right, Congressman. And I think
577 you also know that NSF is working with others to see what
578 other possibilities there are.

579 Mr. JENKINS. Yes. Thank you, Mr. Chairman.

580 Mr. CULBERSON. Thank you, Mr. Jenkins. I recognize Mr.
581 Kilmer.

582 Mr. KILMER. Thank you, Mr. Chairman, and thanks for
583 being with us. You know, you touched on it in your opening
584 remarks on the work NSF does around cybersecurity. And your
585 organization has helped advance our cybersecurity efforts and
586 has provided awards to outstanding schools like Tacoma
587 Community College in my district that train the next
588 generation of cybersecurity workforce and actually conduct

589 research in this space.

590 I am concerned about the level of budget cut and what
591 that would mean in terms of NSF's role in this regard and our
592 cybersecurity as a nation writ large. To what degree has the
593 administration reviewed the additional risk to local and
594 state and our federal government, not to mention private
595 industry, if we invest substantially less in cybersecurity?

596 Ms. CORDOVA. All I can talk about is what NSF is trying
597 to do, realizing how important cybersecurity is. I think you
598 know we have a big investment in CyberCorps Scholarships for
599 Service, which aims to develop just what you are talking
600 about, a well-educated cybersecurity workforce. And we also
601 have a number of other programs like our advanced technical
602 education program for community colleges to develop the
603 technical workforce.

604 I think absolutely we understand at the agency that
605 cybersecurity is one of our biggest challenges going forward.
606 There is enormous interest on the part of universities to
607 provide curricula. I was, as I said, at a university
608 yesterday which has developed and many others a curricula for
609 involving their students in learning more about computer
610 science so they can produce the cybersecurity workforce for
611 the future. Our Social and Behavioral Sciences Directorate
612 is very, very involved with our Computer and Information
613 Science Directorate in encouraging interdisciplinary

614 collaborations of researchers to understand the behavioral
615 practices that are also involved in conjunction with computer
616 practices to provide for a cyber secure world.

617 Mr. KILMER. Do you think that that progress is going to
618 be eroded based on the cuts that the NSF faces?

619 Ms. CORDOVA. Well as I said, the reduced funding does
620 present challenges and we have had to make a number of tough
621 choices in our budget. And there will be impacts from
622 reduced funding, yes.

623 Mr. KILMER. Let me switch gears and ask about
624 geoscience. Some folks may have read the article about the
625 really big one that could hit on the Cascadia subduction zone
626 and the impacts that that would have on the West Coast of the
627 United States. We know a lot about the Cascadia subduction
628 zone but there is a bunch that we do not know, and that is
629 why the NSF funding grants, like the M9 grant awarded to the
630 University of Washington four years ago, is so vital.

631 We have heard arguments made that geoscience and earth
632 science research could be funded by other agencies, like
633 NOAA. Unfortunately within NOAA the office that is
634 responsible for the bulk of that extramural research is also
635 slated for a cut of more than 30 percent. NASA Earth science
636 is slated for a cut as well. So my question to you is this.
637 If NSF is cutting back in geosciences, and NOAA and NASA are
638 cutting back on research in related fields, who is going to

639 do this?

640 Ms. CORDOVA. We are, as you said, one of the major
641 agencies that is involved in the geosciences and our work
642 that we do, often in conjunction with those other agencies,
643 is extremely important. And I think your question is
644 probably a rhetorical question?

645 Mr. KILMER. Actually it is not. I actually am curious
646 who is going to do the work. I mean, if the funding is being
647 cut by everyone who is doing this work, who, where is it
648 going to happen?

649 Ms. CORDOVA. Well there will be less wherewithal in
650 order to do that important work. We will continue to do the
651 best we can with the budget that we have and subject it to
652 the best merit review processes. And we think that that work
653 is very, very important.

654 Mr. KILMER. I do, too. I yield back. Thank you.

655 Mr. CULBERSON. Mr. Kilmer served in the State Senate, I
656 believe, in Washington State. They are very familiar, very
657 familiar with the coastline there, the geology of the area.
658 Is it my memory there was a tremendous tsunami in the 1600s,
659 they found evidence? What was the size of that tsunami? And
660 what effect would that, what kind of an earthquake caused
661 that tsunami, and what would be the effect today, Mr. Kilmer,
662 if you have a similar earthquake and a tsunami of a similar
663 size?

664 Mr. KILMER. I wish I had a science degree like Dr.
665 Cordova. But the potential, you know, in the article that
666 came out last year I think was definitely not right reading
667 because it suggests that there would be massive devastation.
668 The potential for an earthquake at the Cascadia subduction
669 zone could trigger a very significant tsunami. And that is
670 why I think this research is so important.

671 Mr. CULBERSON. Yes, I would certainly agree. Thank
672 you. Thank you very much.

673 Mr. KILMER. Thanks.

674 Mr. CULBERSON. Mr. Palazzo?

675 Mr. PALAZZO. Well, thank you, Mr. Chairman, and thank
676 you, Director Cordova, for being here today. I echo the
677 comments from my colleagues on the important work the
678 National Science Foundation is doing across the board.
679 Earlier this year I cosponsored the Inspire Women Act, which
680 was a bill that directs NASA to encourage women to study
681 science, technology, engineering, and mathematics and to
682 pursue STEM careers, especially aerospace. That bill passed
683 the House alongside the Promoting Women in Entrepreneurship
684 Act, which authorizes NSF to support STEM entrepreneurial
685 programs aimed at women. As you know, these two bills were
686 among the very first signed into law by President Trump.

687 I have long been a supporter of STEM programs,
688 especially those geared towards women, not only because I had

689 the privilege of serving as the Chairman for the Space
690 Subcommittee for five years but also because I have a
691 teenaged daughter at home that I hope pursues a STEM field as
692 well as career one day.

693 Your budget proposes calls for providing opportunities
694 and support for those pursuing STEM programs and it aims to
695 produce measurable, sustainable progress geared towards
696 diversity and inclusion. What is your plan on providing
697 these opportunities, especially as it relates to the Inspire
698 Act and Promoting Women in Entrepreneurship Act? And how do
699 you plan on measuring diversity in STEM programs?

700 Ms. CORDOVA. The National Science Foundation is very
701 committed to broadening the participation of women and
702 minorities in STEM. And we have had a lot of programs over
703 time in order to further those goals. One particular one is
704 the ADVANCE Program, of advancing women faculty at
705 universities. I in fact was a PI on that when I was at
706 Purdue University. We have more recently an INCLUDES Program
707 and we are currently funding 40 pilot programs around the
708 United States in order to encourage women and minorities,
709 everyone really, to have more access to STEM careers. And
710 some of these programs are for K through 12, others are for
711 other age groups, and many different disciplines involved.
712 There is much diversity in the kinds of programs that are
713 being piloted around the country.

714 All of them have the goal of broadening participation,
715 broadening access to STEM. It is hard to be a STEM
716 entrepreneur without first being STEM literate and then being
717 involved in research and then being inspired to go on and
718 start to be an entrepreneur perhaps in a startup company. And
719 so those pilot programs are going on. INCLUDES is one of our
720 ten big ideas. And they are showing tremendous promise. We
721 will be funding more of those proposals in the fiscal year
722 2018 budget. We will be forming alliances of groups, because
723 what we really want to do is to scale up this effort so that
724 it connects the whole United States in an effort to make
725 progress in this area. And then more particularly in our
726 SBIR programs, our Small Business Innovative Research
727 programs, where women can actually, can be encouraged and
728 funded to start their own business, we are upping our efforts
729 to reach out to potential prospects and to encourage a larger
730 number of women to want to be, to start their own companies.

731 Mr. PALAZZO. Well thank you, Director Cordova. And I
732 think promoting women in STEM careers and fields and
733 education is a sound federal investment. I think you make an
734 outstanding role model for inspiring young women to pursue
735 STEM careers as well. So thank you. I yield back.

736 Ms. CORDOVA. Thank you.

737 Mr. CULBERSON. Thank you, Mr. Palazzo. Mr. Cartwright?

738 Mr. CARTWRIGHT. Thank you, Mr. Chairman. Dr. Cordova,

739 thank you for joining us this morning. And I congratulate
740 you on a stunning career and I wish you all the best in the
741 future.

742 I am not the first one to say it. The chairman has said
743 it. My ranking member has said it. This is the first time
744 in the history of the NSF that we are talking about reducing
745 budget, 11 percent lower than the previous year. I will cut
746 to the chase, that was not your idea, was it?

747 Ms. CORDOVA. The NSF is an executive branch agency of
748 the administration. This is the President's budget.

749 Mr. CARTWRIGHT. Okay. Well NSF of course is
750 wholeheartedly and full throatedly supported by both sides of
751 the aisle here in Congress. It is credited with unimaginable
752 discoveries that have increased social welfare and long term
753 economic benefits. American Sign Language, facial
754 recognition software, fiber optics, and the MRI all have
755 roots from NSF funding to promising researchers at
756 institutions like Penn State, where my district is in
757 Pennsylvania. You know this all too well having worked there
758 yourself. Institutions will be gravely damaged by this
759 budget.

760 I want to focus on climate change for a moment. Last
761 week the President announced the U.S. withdrawal from the
762 Paris Accord. Although unfortunate it was not unexpected
763 from an administration that denies climate change and denies

764 that human activity has an effect on as the primary cause of
765 climate change. As the head of the Nation's premiere
766 scientific agency, you must have a scientifically informed
767 view on this issue.

768 I am equally concerned that we might lose our best and
769 brightest, our most talented researchers, to other nations
770 because of these cuts. Just recently French President
771 Emmanuel Macron actually invited American climate change
772 scientists to move to France. You saw that, did you not?

773 Ms. CORDOVA. I heard about it, yes.

774 Mr. CARTWRIGHT. Yes. How does NSF, in this climate how
775 does NSF plan to retain our best and our brightest? Our
776 talented researchers, not just on climate science, but in all
777 scientific fields within the U.S. in an environment where we
778 are cutting the budget for the first time ever, this time by
779 11 percent? How do you keep your best people in this kind of
780 environment?

781 Ms. CORDOVA. I think the budget does, as I said,
782 present impacts and challenges. The budget is not final
783 until Congress weighs in on the budget and I am sure many
784 prospective scientists and engineers are anxiously waiting
785 for how it all unfolds.

786 Meanwhile, as I also said, we have a lot of money to do
787 good science. We have \$6.6 billion proposed and presently we
788 have \$7.5 billion. And our goal is to do the very best

789 science that we can and continue to fund researchers that are
790 talented and that are presenting great proposals, continue to
791 invest in them.

792 We will do everything we can to be more efficient and
793 effective as an agency in order to make those dollars go
794 farther. We will continue to increase our partnerships, and
795 I mentioned partnerships in the context of Green Bank and the
796 context of Arecibo, to leverage the federal investment. And
797 I will continue to go around the country. And just last
798 night I spoke in D.C. to a lot of very young people about the
799 importance of, and their mentors, about the importance of
800 STEM careers. And I do think that emphasizing broadening
801 participation and welcoming more women and minorities into
802 the fields of science because it is just a terrific thing to
803 do for one's self and for the country, for the world, the
804 future.

805 Mr. CARTWRIGHT. Not to interrupt, but I want to follow
806 up with another question. There is a movement afoot on
807 Capitol Hill to selectively fund programs at the NSF. You are
808 aware of that, I believe? A movement to pick and choose here
809 in Congress of what programs to fund at NSF.

810 Ms. CORDOVA. Sure.

811 Mr. CARTWRIGHT. Which I believe would unnecessarily and
812 detrimentally inject politics into questions of what science
813 projects should be funded. How do you feel about that?

814 Ms. CORDOVA. I feel the same way, that the science
815 community is best equipped to set the priorities for science
816 and engineering. We rely on the advice of the National
817 Academy of Sciences and its reports and our advisory groups.
818 And we work with Congress and the administration, of course,
819 to integrate all of those priorities to come up with the very
820 best strategic plan for investment. But I have often said
821 that as the world is changing and evolving the grand
822 challenges require more disciplines, not fewer, to aggregate
823 around those challenges and to give their best input in
824 solving them. And we found the most effective solutions come
825 from interdisciplinary groups that converge on an important
826 question. We never know where the next discovery is going to
827 come from or who is going to make it. And so it just
828 behooves us to continue to fund, as has been our mandate for
829 these 67 years, all of science and engineering.

830 Mr. CARTWRIGHT. Thank you, Director Cordova, and I
831 yield back, Mr. Chairman.

832 Mr. CULBERSON. Thank you, Mr. Cartwright. I am pleased
833 to recognize the gentlewoman from New York, Ms. Meng.

834 Ms. MENG. Thank you, Mr. Chairman, and thank you,
835 Director Cordova, for all your wonderful work. America's
836 economy cannot deliver on its full potential and cannot
837 continue to be great if we do not have STEM workers to fill
838 open STEM jobs. Neglecting to invest in new generations of

839 scientists will only further this problem. Our research
840 shows that STEM fields face persistent and dramatic worker
841 shortages in this country. And for example on the STEM
842 unemployment rate category a study shows from the years 2010
843 to 2016 unemployment rate within the STEM fields went down
844 from 5.9 percent to 2.7 percent.

845 So I believe, as I think many of my colleagues do, that
846 at a time when we should be developing STEM expertise and
847 encouraging the pursuit of these advanced degrees we are
848 cutting funding. And by doing this we will be limiting,
849 cutting back on entire generations of scientists. Because
850 those in these fields will be more prone to leave and less
851 students may want to enter into these fields and will have
852 less support if these cuts go through. So how does the NSF
853 intend to deal with consequences of these cuts and the
854 decreasing numbers of people going into these fields in the
855 first place?

856 Ms. CORDOVA. I hope that there is not decreasing
857 numbers of people going into these amazing fields. Because
858 the country really needs them to remain a global leader. And
859 we will do everything we can to promulgate the importance of
860 science and engineering and to fund programs all the way K
861 through 12, K through my age, for people to get more involved
862 in science and engineering. And we will try to leverage
863 those programs with partnerships from foundations and

864 scientific societies in the private world and industry, which
865 is becoming ever more involved in working with us.

866 Ms. MENG. Colleges and students in my district, which
867 is one of the most diverse districts in our country, they are
868 now receiving many NSF grant funds supporting STEM faculty
869 training, teacher recruitment, development. These are
870 schools such as Queens College and Queensborough Community
871 College in Queens, New York, York College, and the CUNY
872 system in general. And they have been doing a lot of work in
873 this area. Are you concerned that the NSF budget cuts
874 effectiveness may decrease in terms of NSF's ability to
875 support these important efforts moving forward?

876 Ms. CORDOVA. They are important efforts and by the way,
877 just your mentioning Queens, that is where my mother was born
878 and raised. So it was nice to hear that. But absolutely,
879 the reduced funding will have an effect and fewer researchers
880 will be able to be funded. Yesterday I was in St. Louis at
881 Washington University and one of the things I did was to have
882 a round table with some two dozen young faculty who were
883 Career Awardees, which is a very special competitive award
884 that we give. And every time I go to a university I meet
885 with the Career Awardees because they represent the bright,
886 up and coming, the people who are going to make the LIGO and
887 other discoveries of the future. And they represented all of
888 the disciplines in science and engineering. And they were so

889 alive with the transformative nature of their research and
890 part of the Career Award is that they must also do
891 educational outreach in addition to the research. And they
892 said that doing that education, and it is usually in a school
893 system in K through 12, has transformed even they way they
894 think about their future. So it was very heartening to hear
895 them. And but as for impacts, a reduced budget does have
896 impact.

897 Ms. MENG. I too have been having conversations with
898 both private stakeholders and nonprofit organizations who are
899 very concerned about STEM education and want to ensure that
900 they are doing their part to bolster these efforts. So if we
901 could ever have a larger or a further discussion on how to
902 collaborate in light of these potential cuts, I would love to
903 continue this conversation. Thank you. I yield back.

904 Ms. CORDOVA. Thank you.

905 Mr. CULBERSON. Thank you very much. All the members of
906 the subcommittee have expressed our strong support for the
907 National Science Foundation and your mission on the
908 importance of continuing the nation's investment in
909 fundamental research. But I wanted to be sure to add because
910 we have an opportunity through our hearing today, Dr.
911 Cordova, to talk to the scientific community at large.

912 I know that the general sciences here, I see Jeff
913 Mervis, I assume some of the major publications from around

914 the country are here. And the scientific community I hope
915 will join, and my colleagues will join with me and certainly
916 on our side of the aisle to focus the attention of the
917 country on the urgency of bringing down the national deficit,
918 of bringing down the national debt. Because that is the
919 fundamental problem that is devouring all of these precious
920 resources that our constituents work so hard to earn that the
921 70 cents out of every federal dollar goes out the door
922 immediately, as soon as it comes in, for Social Security,
923 Medicare, Medicaid, veterans benefits, under the Obamacare
924 program, the Affordable Care Act, principal on the debt, and
925 interest on the debt. Seventy cents goes right out the door.
926 And the Appropriations Committee is responsible for that
927 remaining 30 cents. And 15 of the 30 cents goes right out
928 the door to help our men and women in the military ensure
929 that they can fight and win, ideally two battlefronts on two
930 sides of the world. But because of underfunding in previous
931 years for the military, 70 percent of the Marine Corps
932 aircraft cannot fly because of lack of spare parts. Half of
933 our Navy's airplanes cannot fly because of a lack of spare
934 parts. It is an unacceptable situation.

935 Our military urgently needs a shot in the arm to bring
936 them back up to the level of readiness and preparedness that
937 we expect the United States military to have to ensure that
938 those young men and women come home safely. So we, all of

939 us, I think, have an obligation in educating our
940 constituents, working with our colleagues, to ensure there is
941 enough money for the National Science Foundation, for NASA,
942 for the other critical work in law enforcement, all the
943 important work that the federal government does. We have got
944 to address the bigger problem of money flying out the door to
945 the programs that are an automatic pilot and devouring our
946 annual federal spending to such an extent that this
947 subcommittee, the Appropriations Committee is going to be
948 reduced to a smaller and smaller percentage of each one of
949 those federal dollars. And we just simply cannot pass this
950 massive debt onto our kids.

951 So, you know, Donald Trump was elected because the
952 country wanted to see these problems dealt with. They wanted
953 to see the debt resolved, the deficit resolved, spending
954 brought under control, the military restored. They wanted
955 problems solved. And we have got a CEO in the White House
956 who is dealing with these urgent problems who has laid out a
957 budget proposal that we may not agree with all parts of it
958 but fundamentally we have to recognize that our military
959 needs help, we have got to get spending under control in
960 order to make sure that the National Science Foundation has
961 got the help they need.

962 And I encourage the scientific community to do all they
963 can to speak to their members of Congress, their members of

964 the Senate, to focus on the bigger problem. Let us balance
965 the federal budget, save the looming bankruptcy of Medicare
966 and Social Security, and that will free up a vast amount of
967 money and allow us to get the deficit under control and get
968 back to balance and ultimately pay down that debt so we are
969 not leaving that to our kids. So that we have got the money
970 to invest in critical work that, expanding the STEM grants,
971 for example, that are so important; making sure that the
972 tsunami detection network is safe and sound; that you have
973 got the money that you need to invest in really important
974 work like the Daniel K. Inouye Solar Telescope, which has a
975 \$20 million line in the budget to continue building this, the
976 world's most powerful solar telescope.

977 And the total cost I understand for the Daniel Inouye
978 Solar Telescope is about \$345 million. Could you talk to us
979 about the current status of the program? Is everything
980 proceeding as planned? And when it comes online in 2020, how
981 will NOAA be able to access the data to fulfill its space
982 weather prediction responsibilities?

983 Ms. CORDOVA. Sure. May I make just a comment related
984 to your remark about the military?

985 Of course a lot of what the military can use today
986 traces its root back to science and technology investments,
987 and whether it is GPS or prosthetics and new materials that
988 are used on the battlefield or above have their roots in

989 science. So we look at science beyond funding a telescope or
990 instruments as really creating a pathway to the future and
991 that has tremendous impacts for all aspects of life,
992 including national security and health, transportation.

993 So on DKIST, and so that is the Daniel K. Inouye Solar
994 Telescope, which will be the world's largest telescope, we
995 expect it to see first light in the middle of 2020, and we
996 welcome any members who would like to see how the telescope
997 is progressing. It is really, besides its promise of being a
998 scientific marvel, it is an engineering marvel.

999 And I took members of the National Science Board, two of
1000 whom are in this audience today there several months ago and
1001 they were just in awe. It is like building really a
1002 satellite on the ground, but one that has enormous
1003 capabilities.

1004 So it is on track to fulfill its promise of having first
1005 light very soon. Everything is going very smoothly.

1006 Mr. CULBERSON. Well, the Space Weather community, have
1007 they begun discussions on how this solar telescope can be
1008 exploited by both NOAA and NASA to inform their operational
1009 or research roles?

1010 Ms. CORDOVA. Yes. I don't know the details of that,
1011 but could provide them to you. But clearly we advertise that
1012 this telescope, because of its incredible sensitivity in
1013 observing the sun and magnetic flares, will be very, very

1014 useful for Space Weather and Space Weather predictions of
1015 substorms and the like from the sun, and those can of course
1016 affect the electric power grid.

1017 And so I am quite sure that those discussions with other
1018 agencies have already taken place, because the world is
1019 really looking to us to have this extraordinary capability to
1020 do this.

1021 Mr. CULBERSON. I am sure the telescope will also help
1022 us, for example, understand things like during the I think it
1023 was the Maunder Minimum, it was a little ice age during the
1024 Middle Ages, it got very, very, very cold as a result of
1025 decreased solar activity, this will help us understand to
1026 what extent the cycles of the sun are and the effect they are
1027 having on Earth's climate.

1028 Ms. CORDOVA. Absolutely, and understand more precisely
1029 the physics of the sun and then how that translates into
1030 impact sun and Earth.

1031 Mr. CULBERSON. Thank you.

1032 Mr. Serrano?

1033 Mr. SERRANO. Do I understand, Mr. Chairman, that this
1034 telescope eventually will be able to look at a state and
1035 determine how many people are going to vote Democrat and how
1036 many people will vote Republican?

1037 [Laughter.]

1038 Ms. CORDOVA. Our telescope is--

1039 Mr. SERRANO. It is called the anti-pundit telescope. I
1040 couldn't help myself.

1041 [Laughter.]

1042 Mr. SERRANO. Speaking of telescopes, back to the
1043 Arecibo Conservatory and Observatory in Puerto Rico, which is
1044 very important to me and obviously to the chairman also.

1045 We know about the reduction; how much have we spent
1046 throughout the years to operate, how much did it cost to
1047 construct, and what is the research benefits of the facility?

1048 Ms. CORDOVA. Well, let me look up my notes here on the
1049 costs. It was built by-- actually, it was built by ARPA, the
1050 precursor of DARPA in the '60s and was completed at a cost of
1051 only \$9 million. That was in the '60s. And then the
1052 transfer to NSF was made in 1969 with us assuming full
1053 responsibility a couple of years later.

1054 So the operations have cost NSF about \$255 million from
1055 1990 through the present fiscal year and total operations
1056 costs before that time from 1970 to 1990 we estimate were
1057 about \$100 million.

1058 So as far as the importance of Arecibo, it has been
1059 extraordinarily important. Of course, that was where Joe
1060 Taylor and Dr. Hulse discovered the binary pulsar, which was
1061 the first real evidence of gravitational waves, and it has
1062 made many other seminal observations, especially on pulsars,
1063 which just happens to be one of my fields. I have been to

1064 the telescope and extraordinary observatory.

1065 Mr. SERRANO. I am also concerned about the condition of
1066 the observatory with respect to maintenance and
1067 modernization. Have any maintenance needs been deferred?
1068 Which ones? Could improvements be made to modernize Arecibo
1069 and what would that entail?

1070 Because there is a concern, I am hearing, that it is not
1071 being taken care of or kept up, because some people believe
1072 it is going to go away.

1073 Ms. CORDOVA. Well, two major upgrades have been funded,
1074 one as long ago as 1974 by NSF and NASA at a cost of \$9
1075 million. And there was a 1997 upgrade, funded by again NSF
1076 and NASA at a cost of \$27 million, which added some powerful
1077 things like the Gregorian feed and a more powerful radar
1078 transmitter.

1079 Modernization of Arecibo could include new optic
1080 elements to allow the telescope to access more of the visible
1081 sky, because observations are currently limited to an angle
1082 of just 20 degrees from straight overhead. New receivers,
1083 upgraded reflector panels and new radar transmitter
1084 subsystems. When I asked my group how much all that would
1085 cost, they don't have firm estimates yet, but they think it
1086 could approach \$100 million to do those kinds of upgrades.

1087 Mr. SERRANO. Do you see a desire to continue? I mean,
1088 I would like to get to the bottom of this information

1089 floating around that in some cases some people say, well,
1090 give it away to some universities, which may not be the worst
1091 thing in the world, but then there are others who say it is
1092 time for it to cease, which should be a warning to other
1093 members of this committee, because it may affect how these
1094 kinds of things are seen in their districts.

1095 What is your sense of what the scientific or the
1096 government community is saying about the observatory?

1097 Ms. CORDOVA. NSF's preferred alternative is to
1098 collaborate with interested parties for a continued
1099 science-focused operation and that is why we put out a
1100 solicitation in January of this year to ask others if they
1101 were interested in partnering on this telescope. And
1102 proposals that are being received in response to the
1103 solicitation are currently under review and they will inform
1104 us as to next steps.

1105 I go back to my earlier comments that we--and the
1106 chairman often asks us just how priorities are set for NSF,
1107 we really do rely on the science/engineering communities to
1108 inform our strategic planning and that is often done through
1109 the Decadal Reports, which actually the astronomy community
1110 piloted a number of decades ago. And in this decade's report
1111 they have said that we couldn't continue to do everything, if
1112 we wanted to do new things, DKIST was mentioned, the LSST,
1113 the spectroscopic survey telescope was mentioned, and we

1114 couldn't do new things and all the investment that requires
1115 without letting some things go.

1116 And then we asked the community to assess current assets
1117 and what they would divest of. And Arecibo and Green Bank
1118 telescope are on that list not because they are not excellent
1119 telescopes, they do do great research in particular areas,
1120 but there are other telescopes that could have improved
1121 resolution over a large what we call phase space in all areas
1122 of observing that can provide just simply more capability,
1123 and we are in a constrained budget.

1124 So that is where we are with Arecibo.

1125 Mr. SERRANO. Thank you so much.

1126 Thank you, Mr. Chairman.

1127 Mr. CULBERSON. Mr. Jenkins.

1128 Mr. JENKINS. Thank you, Mr. Chairman.

1129 Director, during our last round right at the end you
1130 made reference to collaborations and I would like to explore
1131 that just for a few more minutes relating to GBO, Green Bank
1132 Observatory, and the opportunities and the work that NSF has
1133 been undertaking to look for partners in collaborative
1134 relationships that may also provide additional funding for
1135 maintenance moving forward.

1136 Can you share with me kind of what work your office and
1137 the NSF in general has been doing to look for collaborative
1138 relationship opportunities, partners with GBO?

1139 Ms. CORDOVA. Yes. We have been since we started the
1140 environmental impact study, we have been on that course, and
1141 I have to say I myself have been one of the prime movers in
1142 pushing us to look for collaboration and partners. And one
1143 potential partnership has turned up recently for Green Bank
1144 with the national security community and so we are engaged. I
1145 don't want to say too much about it, because it is very new,
1146 within the last couple of weeks, few weeks, but those have
1147 been very, very long and now sustained discourses with that
1148 community over their potential interest in that.

1149 And so we are always hopeful that that will produce
1150 something of significance here and we will keep you informed.

1151 Mr. JENKINS. Well, thank you and I appreciate that. Our
1152 office and I am sure the entire delegation looks forward to
1153 working with you for that. We think there are touch points
1154 with not only those interests, but others, NASA, and there
1155 are just unique opportunities and capacities.

1156 And what I think we are trying to do is obviously not
1157 only continue to work with the relevance and fulfilling those
1158 core NSF missions and functions that you have outlined at
1159 your direction, but also with other federal entities and
1160 agencies and programs.

1161 So we look forward to working with you. Thank you for
1162 your personal interest, as you described engagement in this,
1163 very helpful.

1164 One of the areas we are very supportive of is the EPSCoR
1165 funding. I actually back in the '90s served on the EPSCoR
1166 state board and capacity, so this activity is very important.
1167 One of the things I do notice from NSF funding is that about
1168 88 percent of your funding goes to about 25 states. So I
1169 just really would encourage some careful consideration about
1170 the breadth and the scope and the talents and capabilities of
1171 the other 25 states that are now enjoying only about 12
1172 percent of the NSF funding and making sure, candidly, like I
1173 do is fight for our fair share in the unique talents and
1174 capabilities.

1175 So I just hope that I put a place marker out there of
1176 concern that I have about the disparity in the funding
1177 allocation. I understand this isn't going to be a pot that
1178 is divided in 50 equal ways, but I do believe 25 states
1179 getting 88 percent of the funding warrants a careful
1180 evaluation of those 25 states that receive 12 percent.

1181 Ms. CORDOVA. I hear you, Congressman Jenkins, and
1182 clearly the agency feels similarly and that is why we really
1183 value the EPSCoR program and we do a great deal. It has had
1184 wonderful leadership under Denise Barnes and I think all of
1185 us were at, I spoke at that event and you introduced me a
1186 couple of years ago, it is just a great and transformative
1187 program. And I love going to the EPSCoR states, I went
1188 recently to Rhode Island with Senator Reed and just saw the

1189 amazing work that they are doing.

1190 So I am very appreciative of your remarks.

1191 Mr. JENKINS. Well, thank you.

1192 Thank you, Mr. Chairman. I yield back.

1193 Mr. CULBERSON. Thank you, Mr. Jenkins.

1194 Mr. Kilmer.

1195 Mr. KILMER. Thank you, Chairman.

1196 I know there has been a lot of talk by the current
1197 administration about a big infrastructure initiative. I know
1198 also that research dollars from NSF don't just go to
1199 individual investigators; they support facility investments,
1200 including in my neck of the woods at the University of Puget
1201 Sound, an NSF major research instrumentation award for a mass
1202 spectrometer has made a real difference for faculty and staff
1203 and student research.

1204 I am just curious, is the NSF involved in the
1205 administration's infrastructure initiative and, if not, how
1206 could the NSF perhaps be a partner to increase accessibility
1207 to science?

1208 Ms. CORDOVA. The NSF is very willing to work with the
1209 administration and Congress to pursue important investments
1210 like that. We know there are many findings from
1211 NSF-supported research that can improve infrastructure
1212 investments and we have a lot of research on that going on,
1213 especially in our engineering directorates. We hope that

1214 investments in scientific infrastructure can be considered
1215 and also in cyber-infrastructure as part of the
1216 administration's interest in bolstering infrastructure. And
1217 so we are very open to collaborations.

1218 We have had some talks with congressional members and
1219 their staff about how we are positioned to do increased
1220 investments in infrastructure and you mentioned specifically
1221 the major research instrumentation program that is so
1222 important to our colleges and universities. And of course
1223 then we have the large facilities program and we are trying
1224 to close the gap in funding with our mid-scale program, which
1225 the American AICA, a new Act for Competitiveness and
1226 Innovation asks us to do.

1227 So there is just a lot. Infrastructure has been part of
1228 what NSF has built its scaffold of amazing discoveries in
1229 science and engineering, and we hope that the entire nation
1230 realizes what an important investment that infrastructure is.

1231 Mr. KILMER. I also want to ask you, you mentioned the
1232 Competitiveness Act, it is rare to get to talk to someone who
1233 is NASA's chief scientist. I was thinking as you came in
1234 about October 4th, 1957, Sputnik, and that was a moment in
1235 which the United States woke up to an existential threat and
1236 as a consequence the United States, Democrats and
1237 Republicans, embraced the notion that to respond to that
1238 existential threat required a substantial investment in

1239 science. And we talked about what could be an existential
1240 threat in my neck of the woods with the geoscience issues of
1241 potential earthquakes, but I want to talk about an economic
1242 threat.

1243 A few years back the National Academies worked on Rising
1244 Above the Gathering Storm and then the Gathering Storm,
1245 Revisited partnership with, you know, a number of CEOs and
1246 folks in the scientific community. And as you look at their
1247 findings, they said first, "The Federal Government funding
1248 of R&D as a fraction of GDP has declined by 60 percent since
1249 Sputnik," since the response to Sputnik. And then they
1250 wrote, "Without a renewed effort to bolster the foundations
1251 of our competitiveness, we can expect to lose our privileged
1252 position as a nation."

1253 The former CEO of Intel Paul Otellini put it this way,
1254 he said, "Without a change in U.S. policy, the next big
1255 thing will not be invented here, jobs will not be created
1256 here, and wealth will not accrue here."

1257 I am just curious, do you agree with the findings of the
1258 National Academies in the Rising Above the Gathering Storm
1259 report and their call for doubling investment in NSF?

1260 Ms. CORDOVA. I agree with their findings. As the head
1261 of an executive branch agency, I won't comment on their call
1262 for doubling the budget of the National Science Foundation.

1263 I gave a little talk yesterday about I think the

1264 existential threat is even larger than a lot of people
1265 realize, because we have competition from other countries
1266 that is incredibly serious.

1267 Mr. KILMER. Yes.

1268 Ms. CORDOVA. And that is something that, you know, it
1269 can creep up on you slowly and then all of a sudden you have
1270 lost another market, you have lost your premier position, and
1271 it has gone somewhere else. And, frankly, I am concerned
1272 about that. I am concerned about the accelerating pace of
1273 investments in other countries, I am concerned that we will
1274 lose our global leadership if we don't also invest in science
1275 and engineering.

1276 Mr. KILMER. I share that concern and I know it puts you
1277 in a tough position to have to speak to a budget that calls
1278 for a double-digit cut in the work you are doing. So I
1279 appreciate you being here.

1280 I yield back.

1281 Mr. CULBERSON. Mr. Cartwright.

1282 Mr. CARTWRIGHT. Thank you, Mr. Chairman.

1283 And thank you for your candor on that last question,
1284 Director Cordova.

1285 Director Cordova, we are concerned on this side of the
1286 aisle about our ability to get our questions answered under
1287 the current administration. My question to you is, has the
1288 White House or the Office of Management and Budget approached

1289 NSF about any kind of policy or guidance that would prohibit
1290 or delay responses to ranking members, that is the head
1291 Democrats on congressional committees or subcommittees of
1292 jurisdiction?

1293 Ms. CORDOVA. There has been no direction that would in
1294 any way interfere with the flow of information between NSF
1295 and Congress.

1296 We have ourselves at NSF internal processes for
1297 answering congressional inquiries that have been in place for
1298 years and that haven't changed. We track all incoming and
1299 outgoing congressional correspondence, I sign off on that
1300 myself, and we try to answer all inquiries as quickly as
1301 possible. There is no policy or guidance that would prohibit
1302 or delay the flow of information.

1303 Mr. CARTWRIGHT. Thank you. I am glad to hear that.

1304 Now, we have been talking about climate change and one
1305 of the things that I am concerned about are adaptation and
1306 resiliency. As NSF's fiscal year 2018 budget states, the
1307 Agency-wide Risk and Resilience Initiative, quote, "aims to
1308 improve predictability and risk assessment, and to increase
1309 preparedness for extreme natural and manmade events to reduce
1310 their impact on quality of life, society, and the economy,"
1311 unquote, but the proposed fiscal year 2018 budget includes a
1312 27.4 percent reduction for the Risk and Resilience Initiative
1313 overall.

1314 How would this kind of proposed reduction in funding for
1315 this initiative affect the anticipated outcome of improving
1316 resilience and readiness of interdependent critical
1317 infrastructures?

1318 Ms. CORDOVA. You are right that some difficult choices
1319 had to be made and that the overall annual budget for Risk
1320 and Resilience will be reduced.

1321 Research on hazards in extreme natural events, which is
1322 called our PREEVENTS program, will not be affected and will
1323 continue to enhance understanding of the fundamental
1324 processes underlying geohazards in extreme events on various
1325 spatial and temporal scales, as well as the variability
1326 inherent in such hazards and events, and improve models for
1327 extreme events and their impacts.

1328 But research on resilient infrastructure we have called
1329 our CRISP program, an acronym, will be reduced by about 40
1330 percent and impacting the number of new awards, and that has
1331 been an effort to promote research on interdependent critical
1332 infrastructure systems.

1333 So we do plan to invest in both our PREEVENTS and our
1334 CRISP program to the tune of about \$31 million in Risk and
1335 Resilience in the fiscal year 2018 budget. And I know that
1336 is a reduction and, again, we had some tough choices to make.

1337 Mr. CARTWRIGHT. Further, the Risk and Resilience
1338 Initiative is an NSF-wide investment that has been supported

1339 across six NSF directorates and offices. The fiscal year
1340 2018 budget proposes to eliminate funding completely to the
1341 Computer and Information Science and Engineering Program,
1342 CISE, that is taking away \$6 million.

1343 What is the rationale for eliminating funding for this
1344 program and how might eliminating the CISE program's funding
1345 for this initiative affect efforts across the other
1346 directorates?

1347 Ms. CORDOVA. Well, I think, again, we will supply you
1348 with a more detailed answer for the record, but I think you
1349 are talking about the contribution to the programs I just
1350 talked about by the CISE directorate, the Computer and
1351 Information Science and Engineering directorate. And when I
1352 asked all the directorates to look at roughly a ten-percent
1353 cut in the directorates, they all had tough choices to make
1354 and on these cross-agency initiatives there were puts and
1355 takes.

1356 I think the numbers are what I mentioned for the total
1357 effort, which comes from a number of directorates. The size
1358 of the computer directorate cutback on that, it means that
1359 they made a choice to invest in other initiatives.

1360 Mr. CARTWRIGHT. Thank you, Director.

1361 I yield back, Mr. Chairman.

1362 Mr. CULBERSON. Thank you very much.

1363 Ms. Meng?

1364 Director Cordova, we will submit the remainder of our
1365 questions for the record.

1366 Mr. Serrano, is that--

1367 Mr. SERRANO. Yes.

1368 Mr. CULBERSON. Very good. We will each submit the
1369 remainder of our questions for the record.

1370 I want to thank you again for your service to the
1371 nation.

1372 Ms. CORDOVA. Thank you.

1373 Mr. CULBERSON. And we will stay focused on doing our
1374 best to balance the budget as a whole, so that we can have
1375 more resources for the vital work that the National Science
1376 Foundation, NASA, our law enforcement community, and the
1377 military all do for the United States.

1378 Thank you very much.

1379 Ms. CORDOVA. Great, and thank you.

1380 Mr. CULBERSON. And the hearing is adjourned.

1381 Thank you.

1382 [Whereupon, at 11:58 a.m., the subcommittee was
1383 adjourned.]

SPEAKER LISTING

CARTWRIGHT.	33	34	35	36	37	55	56
	57	58					
CORDOVA.	11	16	19	20	22	23	25
	27	28	29	30	32	33	34
	35	36	37	38	39	40	43
	44	45	46	47	48	50	51
	52	54	55	56	57	58	59
CULBERSON.	3	10	16	19	20	21	24
	27	30	31	33	37	40	44
	45	49	52	55	58	59	
HUNT REPORTING COMPANY			1				
JENKINS.	24	27	49	50	52		
KILMER.	27	29	30	31	52	53	55
MENG.	37	39	40				
PALAZZO.	31	33					
SERRANO.	6	21	22	23	24	45	46
	47	49	59				
VOICE.		19					

INDEX OF INSERTS

INSERT*****

PAGE 5

INSERT*****

PAGE 9

INSERT*****

PAGE 15