A Computer That Stores Memories like Humans Do

wavebreakmedia/Shutterstock.com

A new mathematical model of memory could accelerate the quest to build super-powered, brain-inspired hardware systems.

They called it the Hubble Telescope of the mind.

This was in 2009, after the announcement that a team of scientists from IBM’s Cognitive Computing group had built what was, at the time, the largest artificial brain ever. It was a cell-by-cell computer simulation of the human visual cortex, large as a cat’s brain.

The reference to Hubble, the deep-space telescope, is a nod to the galactic complexity of building a computer with brain-like infrastructure. The cat-sized brain built in 2009 represented 1 billion neurons connected by 10 trillion synapses, according to IBM. Since then, they’ve scaled up dramatically—mapping the neural pathways of a macaque monkey brain, and edging closer to an accurate simulation of the human brain.

Simulating an entire, biologically realistic human brain remains an elusive goal with today’s hardware. The processing power that would be needed to pull off such a feat is mind-boggling. “It would be a nuclear power plant,” Horst Simon, a mathematician and the deputy director of the Lawrence Berkeley National Laboratory, told Popular Mechanics in 2009. “The electricity alone would cost $1 billion per year.” Since then, scientists have said they expect to be able to simulate a human-scale brain by 2019, but they still haven’t solved the problem of how to power such a simulation. (That said, Simon and others have successfully created computer simulations inspired by the number of synapses in the human brain—which is different than a biologically realistic model, but still one step toward that ultimate goal.)

Artificial brains are such energy hogs because they can be infinitely precise, meaning they can draw on colossal troves of data to do what they do. Consider, for example, a neural network used for pattern recognition—the kind of system that’s trained on a massive database of images to be able to recognize faces. The humongous dataset required to train the system is what makes it effective, but it’s also what prevents efficiency. In other words, engineers have figured out how to build computer systems that have astonishing memory capacity, but they still need huge amounts of power to operate them.

This is a problem for anyone who wants the technology behind a brain-inspired computer to be widely available, scalable down to the kinds of devices—say, smartphones—that ordinary people actually use. This scaling problem also helps explain why scientists are so interested in building computers that mimic the human brain to begin with; human brains are both highly sophisticated processors—people carry around a lifetime of memories, after all—and they are remarkably energy-efficient.

If engineers can figure out what makes a human brain run so well, and on so little energy relative to its processing power, they might be able to build a computer that does the same.

“But that has always been a mystery,” says Stefano Fusi, a theoretical neuroscientist at Columbia University’s Zuckerman Institute. “What we wanted to understand is whether we can take advantage of the complexity of biology to essentially build an efficient [artificial] memory system.”

So Fusi and his colleague, Marcus Benna, an associate research scientist at the institute, created a mathematical model that illustrates how the human brain processes and stores new and old memories, given the biological constraints of the human brain. Their findings, published today in a paper in the journal Nature Neuroscience, demonstrate how synapses in the human brain simultaneously form new memories while protecting old ones—and how older memories can help slow the decay of newer ones.

Their model shows that over time, as a person stores enough long-term memories and accumulates enough knowledge, human memory storage becomes more stable. At the same time, the plasticity of the brain diminishes. This change helps explain why babies and children are able to learn so much so quickly: Their brains are highly plastic but not yet very stable.

“That’s why there is a critical period for many abilities like learning languages,” Fusi says. “As you accumulate knowledge, it becomes extremely difficult to learn something new, much more difficult than it is for kids. That’s certainly reflected by any kind of model like ours, where you essentially have what is called metaplasticity.”

Metaplasticity, which refers to the way a synapse’s plasticity changes over time based on its past activity, is a crucial component of the model Fusi and Benna created. In older simulations—the kinds of neural networks that help power many existing machine-learning systems—each synapse is represented by a variable or value that can be tweaked indefinitely as the system runs. “But there’s nothing like that in nature,” Fusi says. “It’s not possible to have billions of different values for a synapse [in the human brain].”

The new model, inspired by how the brain actually works, imitates the plasticity of human synapses over time—and the way older memories affect the storage of newer ones. “In our case, by combining together all these different variables in the model,” Fusi says, “we can extend the memory lifetime without sacrificing the initial strength of the memory. That is what’s important.”

The significance of the latest findings go beyond a theoretical interest in simulating biological systems more accurately, which in and of itself could provide a crucial new framework in neuroscience. In addition, such simulations hint at the real possibility of a new class of neuromorphic hardware powered by supremely powerful and surprisingly small computers.

The model allows for a “much more efficient way in terms of energy,” Fusi says, “so if you want to integrate this [artificial] brain technology—into your mobile phone, so your mobile phone can drive your car for you, you’re probably going to need this kind of computer.”

X
This website uses cookies to enhance user experience and to analyze performance and traffic on our website. We also share information about your use of our site with our social media, advertising and analytics partners. Learn More / Do Not Sell My Personal Information
Accept Cookies
X
Cookie Preferences Cookie List

Do Not Sell My Personal Information

When you visit our website, we store cookies on your browser to collect information. The information collected might relate to you, your preferences or your device, and is mostly used to make the site work as you expect it to and to provide a more personalized web experience. However, you can choose not to allow certain types of cookies, which may impact your experience of the site and the services we are able to offer. Click on the different category headings to find out more and change our default settings according to your preference. You cannot opt-out of our First Party Strictly Necessary Cookies as they are deployed in order to ensure the proper functioning of our website (such as prompting the cookie banner and remembering your settings, to log into your account, to redirect you when you log out, etc.). For more information about the First and Third Party Cookies used please follow this link.

Allow All Cookies

Manage Consent Preferences

Strictly Necessary Cookies - Always Active

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data, Targeting & Social Media Cookies

Under the California Consumer Privacy Act, you have the right to opt-out of the sale of your personal information to third parties. These cookies collect information for analytics and to personalize your experience with targeted ads. You may exercise your right to opt out of the sale of personal information by using this toggle switch. If you opt out we will not be able to offer you personalised ads and will not hand over your personal information to any third parties. Additionally, you may contact our legal department for further clarification about your rights as a California consumer by using this Exercise My Rights link

If you have enabled privacy controls on your browser (such as a plugin), we have to take that as a valid request to opt-out. Therefore we would not be able to track your activity through the web. This may affect our ability to personalize ads according to your preferences.

Targeting cookies may be set through our site by our advertising partners. They may be used by those companies to build a profile of your interests and show you relevant adverts on other sites. They do not store directly personal information, but are based on uniquely identifying your browser and internet device. If you do not allow these cookies, you will experience less targeted advertising.

Social media cookies are set by a range of social media services that we have added to the site to enable you to share our content with your friends and networks. They are capable of tracking your browser across other sites and building up a profile of your interests. This may impact the content and messages you see on other websites you visit. If you do not allow these cookies you may not be able to use or see these sharing tools.

If you want to opt out of all of our lead reports and lists, please submit a privacy request at our Do Not Sell page.

Save Settings
Cookie Preferences Cookie List

Cookie List

A cookie is a small piece of data (text file) that a website – when visited by a user – asks your browser to store on your device in order to remember information about you, such as your language preference or login information. Those cookies are set by us and called first-party cookies. We also use third-party cookies – which are cookies from a domain different than the domain of the website you are visiting – for our advertising and marketing efforts. More specifically, we use cookies and other tracking technologies for the following purposes:

Strictly Necessary Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Functional Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Performance Cookies

We do not allow you to opt-out of our certain cookies, as they are necessary to ensure the proper functioning of our website (such as prompting our cookie banner and remembering your privacy choices) and/or to monitor site performance. These cookies are not used in a way that constitutes a “sale” of your data under the CCPA. You can set your browser to block or alert you about these cookies, but some parts of the site will not work as intended if you do so. You can usually find these settings in the Options or Preferences menu of your browser. Visit www.allaboutcookies.org to learn more.

Sale of Personal Data

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Social Media Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.

Targeting Cookies

We also use cookies to personalize your experience on our websites, including by determining the most relevant content and advertisements to show you, and to monitor site traffic and performance, so that we may improve our websites and your experience. You may opt out of our use of such cookies (and the associated “sale” of your Personal Information) by using this toggle switch. You will still see some advertising, regardless of your selection. Because we do not track you across different devices, browsers and GEMG properties, your selection will take effect only on this browser, this device and this website.