recommended reading

How Going to Space Can Mess With Astronauts' Brains

U.S. astronaut Steven Swanson, a crew member of the mission to the ISS, tests a space suit during pre-launch preparations.

U.S. astronaut Steven Swanson, a crew member of the mission to the ISS, tests a space suit during pre-launch preparations. // Maxim Shipenkov/AP

The first astronauts who set foot on the moon were quarantined for three weeks when they returned to Earth. Scientists weren't sure what kinds of lunar germs they might have brought back with them. 

That level of caution may sound absurd today, but a new study shows trips to outer space can still mess with astronauts on a physiological level. 

New research from Johns Hopkins finds that long-term deep space missions can alter brain proteins and cause cognitive deficits like lapses in attention and slower reaction times. Researchers came to this conclusion by exposing rats to high-energy particles that simulate the conditions that astronauts would experience in deep space, then running them through a series of tests that mimic the fitness assessments that astronauts, pilots, and soldiers are required to take. 

But the strange thing scientists found is that deep-space conditions don't affect everyone the same way. About half of the rats tested emerged entirely unaffected. The others began showing symptoms about seven weeks after exposure to space-like conditions. And once impairments appeared, they never went away. (Some rats showed improvement over time, however, raising the question of whether recovery is possible.)

The difference comes down to an individual's resilience after exposure to radiation. In space, astronauts who leave their space vehicles for space walks or other work are exposed to radiation from the sun's subatomic particles, solar flares, cosmic rays, etc. Even landing on the moon is a risk, since it doesn't have the kind of planetwide magnetic field that protects us on Earth. (Mars, too, is a higher radiation environment than back home.)

If the findings translate to humans, scientists believe they might be able to identify a biological marker that would help determine how an individual astronaut's brain might respond to a deep-space mission before she rockets into the stars. 

The idea would be to help at-risk astronauts better protect themselves in space, says Catherine Davis, the study's lead author. “As with other areas of personalized medicine, we would seek to create individual treatment and prevention plans for astronauts we believe would be more susceptible to cognitive deficits from radiation exposure,” she said in a statement. That might mean wearing an additional radiation shield, or limiting the duration of space walks. 

Scientists say the astronauts who are in space right now are less at-risk for the brain deficits revealed in the study because the International Space Station is close enough to the Earth's magnetic field that they're somewhat protected. 

But identifying what makes someone more likely to be adversely affected by radiation exposure in space could help non-astronauts, too. People on Earth are routinely exposed to radiation—in some work environments and for some medical treatments, for instance—and understanding how radiation might affect someone before they’re exposed could help mitigate the associated risks. 

Elsewhere, scientists are already exploring how deep-space missions can affect other parts of the body and whether trips to space may increase cancer risks.

Threatwatch Alert

Thousands of cyber attacks occur each day

See the latest threats

JOIN THE DISCUSSION

Close [ x ] More from Nextgov
 
 

Thank you for subscribing to newsletters from Nextgov.com.
We think these reports might interest you:

  • It’s Time for the Federal Government to Embrace Wireless and Mobility

    The United States has turned a corner on the adoption of mobile phones, tablets and other smart devices, outpacing traditional desktop and laptop sales by a wide margin. This issue brief discusses the state of wireless and mobility in federal government and outlines why now is the time to embrace these technologies in government.

    Download
  • Featured Content from RSA Conference: Dissed by NIST

    Learn more about the latest draft of the U.S. National Institute of Standards and Technology guidance document on authentication and lifecycle management.

    Download
  • A New Security Architecture for Federal Networks

    Federal government networks are under constant attack, and the number of those attacks is increasing. This issue brief discusses today's threats and a new model for the future.

    Download
  • Going Agile:Revolutionizing Federal Digital Services Delivery

    Here’s one indication that times have changed: Harriet Tubman is going to be the next face of the twenty dollar bill. Another sign of change? The way in which the federal government arrived at that decision.

    Download
  • Software-Defined Networking

    So many demands are being placed on federal information technology networks, which must handle vast amounts of data, accommodate voice and video, and cope with a multitude of highly connected devices while keeping government information secure from cyber threats. This issue brief discusses the state of SDN in the federal government and the path forward.

    Download
  • The New IP: Moving Government Agencies Toward the Network of The Future

    Federal IT managers are looking to modernize legacy network infrastructures that are taxed by growing demands from mobile devices, video, vast amounts of data, and more. This issue brief discusses the federal government network landscape, as well as market, financial force drivers for network modernization.

    Download

When you download a report, your information may be shared with the underwriters of that document.